Wick and anti-Wick operator symbols
Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 577-606 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper Wick and anti-Wick operator symbols are studied in connection with expansion into normal and antinormal series in terms of generation and annihilation operators. By the aid of the Wick $A(\bar z,z)$ and anti-Wick $\overset0A(z,\bar z)$ symbol of the operator $\widehat A$ a series of characteristic spectral properties are identified for $\widehat A$. In particular, results are presented concerning necessary and sufficient conditions (separately) for $\widehat A$ to belong to the classes of bounded operators, completely continuous operators and nuclear operators, and also concerning bounds on the spectrum of $\widehat A$, and the asymptotic behavior of the number $N(E)$ of eigenvalues below $E$; and for positive selfadjoint operators a bound is obtained for the trace of the Green function: $$ \int\exp\bigl[-tA(\bar z,z)\bigr]\Pi\,dz\,d\bar z\leqslant\operatorname{sp}\exp(-t\widehat A)\leqslant\int\exp\bigl[-tA(z,\bar z)\bigr]\Pi\,dz\,d\bar z. $$ Bibliography: 14 titles.
@article{SM_1971_15_4_a6,
     author = {F. A. Berezin},
     title = {Wick and {anti-Wick} operator symbols},
     journal = {Sbornik. Mathematics},
     pages = {577--606},
     year = {1971},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_4_a6/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - Wick and anti-Wick operator symbols
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 577
EP  - 606
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_4_a6/
LA  - en
ID  - SM_1971_15_4_a6
ER  - 
%0 Journal Article
%A F. A. Berezin
%T Wick and anti-Wick operator symbols
%J Sbornik. Mathematics
%D 1971
%P 577-606
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_15_4_a6/
%G en
%F SM_1971_15_4_a6
F. A. Berezin. Wick and anti-Wick operator symbols. Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 577-606. http://geodesic.mathdoc.fr/item/SM_1971_15_4_a6/

[1] V. A. Fock, “Konfigurations Raum und zweite Quantelung”, Z. Phys., 75 (1932), 622–647 ; V. A. Fok, Raboty po kvantovoi teorii polya, LGU, 1957 | DOI | Zbl

[2] V. A. Fock, “Zur Quantenelectrodynamik”, Soviet Phys., 6 (1934), 425 ; V. A. Fok, Raboty po kvantovoi teorii polya, LGU, 1957 | Zbl

[3] V. Bargmann, “On a Hilbert space of analytic functions”, Comm. Pure and Appl. Math., 3 (1961), 215–228 | MR

[4] A. G. Kostyuchenko, Nekotorye voprosy spektralnoi teorii dlya uravnenii s chastnymi proizvodnymi, Differentsialnye uravneniya s chastnymi proizvodnymi, Nauka, Moskva, 1970

[5] M. Sh. Birman, V. V. Borzov, “Ob asimptotike diskretnogo spektra nekotorykh singulyarnykh differentsialnykh operatorov”, Problemy matematicheskoi fiziki, 1971, no. 5, 24–38 | MR | Zbl

[6] F. A. Berezin, “Kanonicheskie preobrazovaniya v predstavlenii vtorichnogo kvantovaniya”, DAN SSSR, 137:2 (1961), 311–314 | MR | Zbl

[7] I. R. Klauder, E. C. G. Sudarshan, Fundamentals of quantum optics, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR

[8] G. S. Agarwajl, E. Wolf, “Calculus for fuctions of noncommuting operators and general phas-space method in quantum mecanics”, Phys. Rew., 2 (1970), 2161–2225

[9] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, Moskva, 1965 | MR

[10] F. A. Berezin, “Neskolko zamechanii o predstavleniyakh sootnoshenii kommutatsii”, Uspekhi matem. nauk, XXIV (1969), 65–88 | MR

[11] F. A. Berezin, “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Trudy Mosk. matem. ob-va, XVII (1967), 117–196 | MR

[12] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, IL, Moskva, 1948

[13] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatgiz, Moskva, 1963

[14] D. V. Widder, The Laplace Transform, Princeton, 1941 | MR | Zbl