On $\Gamma$-equivalence of zero-dimensional cycles
Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 555-567
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we investigate the connections between the regular differentials defined on a manifold and its zero-dimensional cycles equivalent under several relations of equivalence directly generalizing rational equivalence. Bibliography: 3 titles.
@article{SM_1971_15_4_a4,
author = {A. A. Roitman},
title = {On $\Gamma$-equivalence of zero-dimensional cycles},
journal = {Sbornik. Mathematics},
pages = {555--567},
year = {1971},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_4_a4/}
}
A. A. Roitman. On $\Gamma$-equivalence of zero-dimensional cycles. Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 555-567. http://geodesic.mathdoc.fr/item/SM_1971_15_4_a4/
[1] D. Mumford, “Rational equivalence of $0$-cycles on surfaces”, J. Math. Kyoto Univ., 9:2 (1969), 195–204 | MR | Zbl
[2] A. Malluck, “On the symmetric product at a rational surface”, Proc. Amer. Math. Soc., 21:3 (1969), 683–688 | DOI | MR
[3] A. Malluck, “Ruled surfaces and the Albanese mapping”, Bull. Amer. Math. Soc., 75:4 (1969), 776–779 | DOI | MR