On $\Gamma$-equivalence of zero-dimensional cycles
Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 555-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we investigate the connections between the regular differentials defined on a manifold and its zero-dimensional cycles equivalent under several relations of equivalence directly generalizing rational equivalence. Bibliography: 3 titles.
@article{SM_1971_15_4_a4,
     author = {A. A. Roitman},
     title = {On $\Gamma$-equivalence of zero-dimensional cycles},
     journal = {Sbornik. Mathematics},
     pages = {555--567},
     year = {1971},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_4_a4/}
}
TY  - JOUR
AU  - A. A. Roitman
TI  - On $\Gamma$-equivalence of zero-dimensional cycles
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 555
EP  - 567
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_4_a4/
LA  - en
ID  - SM_1971_15_4_a4
ER  - 
%0 Journal Article
%A A. A. Roitman
%T On $\Gamma$-equivalence of zero-dimensional cycles
%J Sbornik. Mathematics
%D 1971
%P 555-567
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_15_4_a4/
%G en
%F SM_1971_15_4_a4
A. A. Roitman. On $\Gamma$-equivalence of zero-dimensional cycles. Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 555-567. http://geodesic.mathdoc.fr/item/SM_1971_15_4_a4/

[1] D. Mumford, “Rational equivalence of $0$-cycles on surfaces”, J. Math. Kyoto Univ., 9:2 (1969), 195–204 | MR | Zbl

[2] A. Malluck, “On the symmetric product at a rational surface”, Proc. Amer. Math. Soc., 21:3 (1969), 683–688 | DOI | MR

[3] A. Malluck, “Ruled surfaces and the Albanese mapping”, Bull. Amer. Math. Soc., 75:4 (1969), 776–779 | DOI | MR