On the action of unipotent groups in a lattice space
Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 549-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the trajectory of a lattice of complete measure under the action of a one-parameter group of unipotent linear transformations does not tend to infinity in the lattice space. Bibliography: 3 titles.
@article{SM_1971_15_4_a3,
     author = {G. A. Margulis},
     title = {On the action of unipotent groups in a~lattice space},
     journal = {Sbornik. Mathematics},
     pages = {549--554},
     year = {1971},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_4_a3/}
}
TY  - JOUR
AU  - G. A. Margulis
TI  - On the action of unipotent groups in a lattice space
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 549
EP  - 554
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_4_a3/
LA  - en
ID  - SM_1971_15_4_a3
ER  - 
%0 Journal Article
%A G. A. Margulis
%T On the action of unipotent groups in a lattice space
%J Sbornik. Mathematics
%D 1971
%P 549-554
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_15_4_a3/
%G en
%F SM_1971_15_4_a3
G. A. Margulis. On the action of unipotent groups in a lattice space. Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 549-554. http://geodesic.mathdoc.fr/item/SM_1971_15_4_a3/

[1] I. I. Pyatetskii-Shapiro, “Diskretnye podgruppy poluprostykh grupp”, Trudy Mosk. matem. ob-va, 18 (1968), 3–18

[2] G. A. Margulis, “K probleme arifmetichnosti diskretnykh grupp”, DAN SSSR, 187:3 (1969), 518–520 | MR | Zbl

[3] Dzh. Kassels, Vvedenie v geometriyu chisel, Mir, Moskva, 1965 | MR