On the asymptotics of Green's functions for certain wave problems. I. Stationary case
Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 513-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

First part of paper. The paper is concerned with the study of asymptotic properties of the Green function for the Neumann problem in the exterior of a planar convex domain for the Helmholtz equation. Figures: 1. Bibliography: 8 titles.
@article{SM_1971_15_4_a1,
     author = {V. M. Babich},
     title = {On the asymptotics of {Green's} functions for certain wave problems. {I.~Stationary} case},
     journal = {Sbornik. Mathematics},
     pages = {513--533},
     year = {1971},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_4_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - On the asymptotics of Green's functions for certain wave problems. I. Stationary case
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 513
EP  - 533
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_4_a1/
LA  - en
ID  - SM_1971_15_4_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T On the asymptotics of Green's functions for certain wave problems. I. Stationary case
%J Sbornik. Mathematics
%D 1971
%P 513-533
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_15_4_a1/
%G en
%F SM_1971_15_4_a1
V. M. Babich. On the asymptotics of Green's functions for certain wave problems. I. Stationary case. Sbornik. Mathematics, Tome 15 (1971) no. 4, pp. 513-533. http://geodesic.mathdoc.fr/item/SM_1971_15_4_a1/

[1] C. S. Morawetz, D. Ludwig, “An inequality for reduced wave operator and the justification of geometrical optics”, Comm. Pure and Appl. Math., XXI:2 (1968), 111–118 | MR

[2] D. Ludwig, “Uniform asymptotic expansion of the field scattered by a convex object at high frequencies”, Comm. Pure and Appl. Math., XX:1 (1967), 103–138 | DOI | MR

[3] F. Ursell, “On the short-wave asymptotic theory of the wave equation $(V^2+k^2)\varphi=0$”, Proc. Cambr. Phil. Soc., 53:1 (1957), 115–133 | DOI | MR | Zbl

[4] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107) (1964), 576–630 | Zbl

[5] R. Grimshaw, “High-frequency scattering by finite convex regions”, Comm. Pure and Appl. Math., XIX:2 (1966), 167–198 | DOI | MR

[6] V. D. Andronov, Nekotorye primeneniya metoda Ersela v korotkovolnovykh zadachakh dlya uravneniya Gelmgoltsa, Dissertatsiya, LGU, Leningrad, 1965

[7] V. M. Babich, “Ob analiticheskom prodolzhenii rezolventy vneshnikh zadach dlya operatora Laplasa na vtoroi list”, Teoriya funktsii, funk. analiz i ikh prilozheniya, 151–157, LGU, Leningrad

[8] V. M. Babich, “Otsenka funktsii Grina dlya uravneniya Gelmgoltsa v zone teni”, Vestnik LGU, 1965, no. 7, 5–15 | Zbl