Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions
Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 415-441
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result established in this article is the following. Let $\alpha$ be an arbitrary negative nonintegral number. Then every continuous function can be changed on a set of arbitrarily small measure so that if $g(x)$ denotes the new function, then the sequence of the $T$-means (corresponding to the method $(C,\alpha)$) of the function $g(x)$ contains a subsequence converging uniformly to the function $g(x)$. Bibliography: 3 titles.
@article{SM_1971_15_3_a3,
author = {D. E. Men'shov},
title = {Properties of {Ces\`aro} means of negative order and of certain other $T$-means for {Fourier} series of continuous functions},
journal = {Sbornik. Mathematics},
pages = {415--441},
year = {1971},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/}
}
TY - JOUR AU - D. E. Men'shov TI - Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions JO - Sbornik. Mathematics PY - 1971 SP - 415 EP - 441 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/ LA - en ID - SM_1971_15_3_a3 ER -
D. E. Men'shov. Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions. Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 415-441. http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/