Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions
Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 415-441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result established in this article is the following. Let $\alpha$ be an arbitrary negative nonintegral number. Then every continuous function can be changed on a set of arbitrarily small measure so that if $g(x)$ denotes the new function, then the sequence of the $T$-means (corresponding to the method $(C,\alpha)$) of the function $g(x)$ contains a subsequence converging uniformly to the function $g(x)$. Bibliography: 3 titles.
@article{SM_1971_15_3_a3,
     author = {D. E. Men'shov},
     title = {Properties of {Ces\`aro} means of negative order and of certain other $T$-means for {Fourier} series of continuous functions},
     journal = {Sbornik. Mathematics},
     pages = {415--441},
     year = {1971},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/}
}
TY  - JOUR
AU  - D. E. Men'shov
TI  - Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 415
EP  - 441
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/
LA  - en
ID  - SM_1971_15_3_a3
ER  - 
%0 Journal Article
%A D. E. Men'shov
%T Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions
%J Sbornik. Mathematics
%D 1971
%P 415-441
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/
%G en
%F SM_1971_15_3_a3
D. E. Men'shov. Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions. Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 415-441. http://geodesic.mathdoc.fr/item/SM_1971_15_3_a3/

[1] D. Menshov, “Sur la convergence uniforme des series de Fourier”, Matem. sb., 11(53) (1942), 67–96 | MR | Zbl

[2] H. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961

[3] A. Zigmund, Trigonometricheskie ryady, ch. I, Mir, Moskva, 1965 | MR