An estimate from below for the spatial diameter of a~surface in terms of its intrinsic radius and curvature
Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 405-414
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the following
Theorem. Let $F$ be a regular simply connected surface of class $C^3$ in $R^3$. There exist postitive absolute constants $C$ and $C_1$ such that if
$$
\mu=\int_F|K|\,dS,
$$
where $K$ is the Gaussian curvature and $S$ is the area element on $F$, the estimate
$$
d\geqslant\bigl(\sqrt3-C_1\sqrt\mu\bigr)r
$$
holds. Bibliography: 11 titles.
@article{SM_1971_15_3_a2,
author = {Yu. D. Burago},
title = {An estimate from below for the spatial diameter of a~surface in terms of its intrinsic radius and curvature},
journal = {Sbornik. Mathematics},
pages = {405--414},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_3_a2/}
}
TY - JOUR AU - Yu. D. Burago TI - An estimate from below for the spatial diameter of a~surface in terms of its intrinsic radius and curvature JO - Sbornik. Mathematics PY - 1971 SP - 405 EP - 414 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1971_15_3_a2/ LA - en ID - SM_1971_15_3_a2 ER -
Yu. D. Burago. An estimate from below for the spatial diameter of a~surface in terms of its intrinsic radius and curvature. Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/SM_1971_15_3_a2/