The Noether–Enriques theorem on canonical curves
Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 361-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The principal result of the present work consists in the proof that an intersection of quadrics passing through a canonical curve is a reduced variety. The possible cases when the intersection of quadrics does not coincide with the curve itself are also examined in this article. Figures: 1. Bibliography: 8 titles.
@article{SM_1971_15_3_a1,
     author = {V. V. Shokurov},
     title = {The {Noether{\textendash}Enriques} theorem on canonical curves},
     journal = {Sbornik. Mathematics},
     pages = {361--403},
     year = {1971},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_3_a1/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - The Noether–Enriques theorem on canonical curves
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 361
EP  - 403
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_3_a1/
LA  - en
ID  - SM_1971_15_3_a1
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T The Noether–Enriques theorem on canonical curves
%J Sbornik. Mathematics
%D 1971
%P 361-403
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_15_3_a1/
%G en
%F SM_1971_15_3_a1
V. V. Shokurov. The Noether–Enriques theorem on canonical curves. Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 361-403. http://geodesic.mathdoc.fr/item/SM_1971_15_3_a1/

[1] Algebraicheskie poverkhnosti, Trudy Matem. in-ta im. V. A. Steklova, 75, 1965 | MR | Zbl

[2] M. Nagata, “Ratsionalnye poverkhnosti. I”, Matematika, 8:1 (1964), 55–71

[3] Samuel, On old and new results on algebraic curves, Tata Inst. Fundam. Research, 1965

[4] Y. Akizuki, “Theorems of Bertini on linear systems”, J. Math. Soc. Japan, 3 (1951), 170–180 | MR | Zbl

[5] Y. Nakai, “Note on the intersection of an algebraic variety with the generic hyperplane”, Mem. Coll. Sci. Univ. Kyoto, A26 (1951), 185–187 | MR

[6] D. Babbage, “A note on the quadrics through a canonical curve”, J. London Math. Soc., 14:4 (1939), 310–314 | DOI | MR

[7] M. Noether, “Über invariant Darstellung algebraisher Functionen”, Math. Ann., 17 (1880), 263–284 | DOI | MR

[8] F. Enriques, O. Chisini, “Teoria geometrika delle equazione e delle funzioni algehriche”, Bologna, 1924, 97–109