Bounded cohomology for coherent analytic sheaves over complex spaces
Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 335-360
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a certain continuous family $V_t=\{V_{ti}\}$, $0\leqslant t\leqslant1$, of finite covers by holomorphically complete domains is constructed for a compact complex space $X$ such that if $t_1 then $V_{t_1i}\Subset V_{t_2i}$ and $\overline V_{ti}=\bigcap_{t'>t}V_{t'i}V_{ti}=\bigcup_{t' for all $i$ and $t$. It is proved that for each coherent sheaf $F$ over $X$ there exist positive constants $K$ and $\alpha$ such that for any $t_1,t_2$ with $t_1, if $c\in C^p(V_{t_2},F)$ is a coboundary then one can find a cochain $c'\in C^{p-1}(V_{t_2},F)$ such that $\delta c'=c$ and $$ \|c'\|_{t_1}<K\frac1{(t_2-t_1)^\alpha}\|c\|_{t_2}. $$ Bibliography: 4 titles.
@article{SM_1971_15_3_a0,
author = {I. F. Donin},
title = {Bounded cohomology for coherent analytic sheaves over complex spaces},
journal = {Sbornik. Mathematics},
pages = {335--360},
year = {1971},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_3_a0/}
}
I. F. Donin. Bounded cohomology for coherent analytic sheaves over complex spaces. Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 335-360. http://geodesic.mathdoc.fr/item/SM_1971_15_3_a0/
[1] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, Moskva, 1968 | MR
[2] L. Khermander, “Otsenki v $L_2$ i teoremy suschestvovaniya dlya operatora $\overline d$”, Matematika, 10:2 (1966), 59–116
[3] A. Douady, “Le probleme des modules pour les sous espaces analytiques compacts d'un espace analytique”, Ann. Inst. Fourier, 16:1 (1966), 1–95 | MR | Zbl
[4] B. Malgranzh, Idealy differentsiruemykh funktsii, Mir, Moskva, 1968