Bounded cohomology for coherent analytic sheaves over complex spaces
Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 335-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a certain continuous family $V_t=\{V_{ti}\}$, $0\leqslant t\leqslant1$, of finite covers by holomorphically complete domains is constructed for a compact complex space $X$ such that if $t_1 then $V_{t_1i}\Subset V_{t_2i}$ and $\overline V_{ti}=\bigcap_{t'>t}V_{t'i}V_{ti}=\bigcup_{t' for all $i$ and $t$. It is proved that for each coherent sheaf $F$ over $X$ there exist positive constants $K$ and $\alpha$ such that for any $t_1,t_2$ with $t_1, if $c\in C^p(V_{t_2},F)$ is a coboundary then one can find a cochain $c'\in C^{p-1}(V_{t_2},F)$ such that $\delta c'=c$ and $$ \|c'\|_{t_1}<K\frac1{(t_2-t_1)^\alpha}\|c\|_{t_2}. $$ Bibliography: 4 titles.
@article{SM_1971_15_3_a0,
     author = {I. F. Donin},
     title = {Bounded cohomology for coherent analytic sheaves over complex spaces},
     journal = {Sbornik. Mathematics},
     pages = {335--360},
     year = {1971},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_3_a0/}
}
TY  - JOUR
AU  - I. F. Donin
TI  - Bounded cohomology for coherent analytic sheaves over complex spaces
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 335
EP  - 360
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_3_a0/
LA  - en
ID  - SM_1971_15_3_a0
ER  - 
%0 Journal Article
%A I. F. Donin
%T Bounded cohomology for coherent analytic sheaves over complex spaces
%J Sbornik. Mathematics
%D 1971
%P 335-360
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_15_3_a0/
%G en
%F SM_1971_15_3_a0
I. F. Donin. Bounded cohomology for coherent analytic sheaves over complex spaces. Sbornik. Mathematics, Tome 15 (1971) no. 3, pp. 335-360. http://geodesic.mathdoc.fr/item/SM_1971_15_3_a0/

[1] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, Moskva, 1968 | MR

[2] L. Khermander, “Otsenki v $L_2$ i teoremy suschestvovaniya dlya operatora $\overline d$”, Matematika, 10:2 (1966), 59–116

[3] A. Douady, “Le probleme des modules pour les sous espaces analytiques compacts d'un espace analytique”, Ann. Inst. Fourier, 16:1 (1966), 1–95 | MR | Zbl

[4] B. Malgranzh, Idealy differentsiruemykh funktsii, Mir, Moskva, 1968