An energy condition for the existence of a rotation
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 325-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the following assertion is proved. Let the regular vector field $\mathbf u=(u^1,u^2,u^3)$ be defined in a cube in the space $E^3$. If the sum of the principal minors of the matrix $\|\partial u^i/\partial x_j\|$ is majorized by the quantity $c^2\bigl(|1|+|\mathbf u|^2\bigr)^2$ and, moreover, $|\operatorname{rot}\mathbf u|\leqslant\mu$, then the length $a$ of the side of the square is bounded above: $a\leqslant a_0(\mu,c)$. As an application there is an interpretation of the results in terms of the mechanics of elastic media. Thus, it is established that if a deformable body contains a sufficiently large cube and if a large part of the energy does not involve the spatial divergence, then there exists a nonzero rotational force field. Bibliography: 8 titles.
@article{SM_1971_15_2_a8,
     author = {Yu. A. Aminov},
     title = {An energy condition for the existence of a~rotation},
     journal = {Sbornik. Mathematics},
     pages = {325--334},
     year = {1971},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - An energy condition for the existence of a rotation
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 325
EP  - 334
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/
LA  - en
ID  - SM_1971_15_2_a8
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T An energy condition for the existence of a rotation
%J Sbornik. Mathematics
%D 1971
%P 325-334
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/
%G en
%F SM_1971_15_2_a8
Yu. A. Aminov. An energy condition for the existence of a rotation. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 325-334. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/

[1] N. V. Efimov, “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, DAN SSSR, 93:4 (1953), 609–611 | MR | Zbl

[2] E. Heinz, “Über Flächen mit eineindeutiger Projection auf eine Ebene, deren Krürnmungen durch Ungleichungen eingeschränkt sind”, Math. Ann., 129:5 (1955), 451–454 | DOI | MR | Zbl

[3] S. S. Chern, “On the curvatures of a piece of hypersurface in euclidean space”, Abh. Math. Semin. Univ. Hamburg, 29:1–2 (1965), 77–91 | DOI | MR | Zbl

[4] Yu. A. Aminov, “$n$-mernye analogi integralnoi formuly S. N. Bernshteina”, Matem. sb., 75(117) (1968), 385–399 | MR

[5] Yu. A. Aminov, “Nekotorye globalnye voprosy geometrii vektornogo polya”, Ukr. geometr. sb., 1970, no. 8, 3–15 | MR | Zbl

[6] Yu. A. Aminov, “Istochniki krivizny vektornogo polya”, Matem. sb., 80(122) (1969), 210–224 | MR

[7] A. Lyav, Matematicheskaya teoriya uprugosti, ONTI, Moskva–Leningrad, 1935

[8] Dzh. Sing, Obschaya teoriya otnositelnosti, IL, Moskva, 1963