@article{SM_1971_15_2_a8,
author = {Yu. A. Aminov},
title = {An energy condition for the existence of a~rotation},
journal = {Sbornik. Mathematics},
pages = {325--334},
year = {1971},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/}
}
Yu. A. Aminov. An energy condition for the existence of a rotation. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 325-334. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/
[1] N. V. Efimov, “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, DAN SSSR, 93:4 (1953), 609–611 | MR | Zbl
[2] E. Heinz, “Über Flächen mit eineindeutiger Projection auf eine Ebene, deren Krürnmungen durch Ungleichungen eingeschränkt sind”, Math. Ann., 129:5 (1955), 451–454 | DOI | MR | Zbl
[3] S. S. Chern, “On the curvatures of a piece of hypersurface in euclidean space”, Abh. Math. Semin. Univ. Hamburg, 29:1–2 (1965), 77–91 | DOI | MR | Zbl
[4] Yu. A. Aminov, “$n$-mernye analogi integralnoi formuly S. N. Bernshteina”, Matem. sb., 75(117) (1968), 385–399 | MR
[5] Yu. A. Aminov, “Nekotorye globalnye voprosy geometrii vektornogo polya”, Ukr. geometr. sb., 1970, no. 8, 3–15 | MR | Zbl
[6] Yu. A. Aminov, “Istochniki krivizny vektornogo polya”, Matem. sb., 80(122) (1969), 210–224 | MR
[7] A. Lyav, Matematicheskaya teoriya uprugosti, ONTI, Moskva–Leningrad, 1935
[8] Dzh. Sing, Obschaya teoriya otnositelnosti, IL, Moskva, 1963