An energy condition for the existence of a~rotation
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 325-334
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the following assertion is proved. Let the regular vector field
$\mathbf u=(u^1,u^2,u^3)$ be defined in a cube in the space $E^3$. If the sum of the principal minors of the matrix $\|\partial u^i/\partial x_j\|$ is majorized by the quantity
$c^2\bigl(|1|+|\mathbf u|^2\bigr)^2$ and, moreover, $|\operatorname{rot}\mathbf u|\leqslant\mu$, then the length $a$ of the side of the square is bounded above:
$a\leqslant a_0(\mu,c)$. As an application there is an interpretation of the results in terms of the mechanics of elastic media. Thus, it is established that if a deformable body contains a sufficiently large cube and if a large part of the energy does not involve the spatial divergence, then there exists a nonzero rotational force field.
Bibliography: 8 titles.
@article{SM_1971_15_2_a8,
author = {Yu. A. Aminov},
title = {An energy condition for the existence of a~rotation},
journal = {Sbornik. Mathematics},
pages = {325--334},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/}
}
Yu. A. Aminov. An energy condition for the existence of a~rotation. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 325-334. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a8/