On best approximations by rational functions with a fixed number of poles
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 313-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are obtained for the rate of the approximation of functions $f$ continuous on the interval $[0,1]$ and permitting bounded analytic continuation into the circle $K=\bigl\{z:|z-1|<1\bigr\}$ by means of rational functions with a fixed number of geometrically different poles. Figures: 2. Bibliography: 7 titles.
@article{SM_1971_15_2_a7,
     author = {K. N. Lungu},
     title = {On best approximations by rational functions with a~fixed number of poles},
     journal = {Sbornik. Mathematics},
     pages = {313--324},
     year = {1971},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a7/}
}
TY  - JOUR
AU  - K. N. Lungu
TI  - On best approximations by rational functions with a fixed number of poles
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 313
EP  - 324
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_2_a7/
LA  - en
ID  - SM_1971_15_2_a7
ER  - 
%0 Journal Article
%A K. N. Lungu
%T On best approximations by rational functions with a fixed number of poles
%J Sbornik. Mathematics
%D 1971
%P 313-324
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_15_2_a7/
%G en
%F SM_1971_15_2_a7
K. N. Lungu. On best approximations by rational functions with a fixed number of poles. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a7/

[1] D. I. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 111 (1964), 11–14 | MR

[2] A. A. Gonchar, “Otsenki rosta ratsionalnykh funktsii i nekotorye ikh prilozheniya”, Matem. sb., 72(114) (1967), 489–503 | Zbl

[3] A. P. Bulanov, “Asimptotika dlya naimenshikh uklonenii $|x|$ ot ratsionalnykh funktsii”, Matem. sb., 76(118) (1969), 288–303 | MR

[4] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sb., 73(115) (1967), 630–638 | MR | Zbl

[5] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR

[6] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, Moskva, 1965 | MR

[7] A. A. Gonchar, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Trudy mezhdunarodnogo kongressa matematikov, Mir, Moskva, 329–356