On best approximations by rational functions with a~fixed number of poles
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 313-324
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates are obtained for the rate of the approximation of functions $f$ continuous on the interval $[0,1]$ and permitting bounded analytic continuation into the circle $K=\bigl\{z:|z-1|1\bigr\}$ by means of rational functions with a fixed number of geometrically different poles.
Figures: 2.
Bibliography: 7 titles.
@article{SM_1971_15_2_a7,
author = {K. N. Lungu},
title = {On best approximations by rational functions with a~fixed number of poles},
journal = {Sbornik. Mathematics},
pages = {313--324},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a7/}
}
K. N. Lungu. On best approximations by rational functions with a~fixed number of poles. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a7/