Analogs of Weyl inequalities and the trace theorem in Banach space
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 299-312

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a completely continuous operator acting on the Banach space $\mathfrak B$, let $\{\lambda_j(A)\}$ be the complete system of its eigenvalues (with regard for multiplicity) and let $s_{n+1}(A)$ be the distance from $A$ to the set of all operators of range dimension not greater than $n$. If \begin{equation} \sum_{n=1}^\infty s_n(A)\ln\bigl(s_n^{-1}(A)+1\bigr)\infty, \end{equation} then $\operatorname{sp}A=\sum\lambda_j(A)$, where $\operatorname{sp}A$ is a functional which is linear on the set of operators satisfying condition (1) (and continuous in a certain topology) and which coincides with its trace for finite-dimensional $A$. The proof of this theorem is based on certain analogs of the famous Weyl inequalities. Bibliography: 14 titles.
@article{SM_1971_15_2_a6,
     author = {A. S. Markus and V. I. Matsaev},
     title = {Analogs of {Weyl} inequalities and the trace theorem in {Banach} space},
     journal = {Sbornik. Mathematics},
     pages = {299--312},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a6/}
}
TY  - JOUR
AU  - A. S. Markus
AU  - V. I. Matsaev
TI  - Analogs of Weyl inequalities and the trace theorem in Banach space
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 299
EP  - 312
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_2_a6/
LA  - en
ID  - SM_1971_15_2_a6
ER  - 
%0 Journal Article
%A A. S. Markus
%A V. I. Matsaev
%T Analogs of Weyl inequalities and the trace theorem in Banach space
%J Sbornik. Mathematics
%D 1971
%P 299-312
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_15_2_a6/
%G en
%F SM_1971_15_2_a6
A. S. Markus; V. I. Matsaev. Analogs of Weyl inequalities and the trace theorem in Banach space. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 299-312. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a6/