Resolutions corresponding to closed mappings
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 227-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider certain resolutions defined for any closed mapping (they determine certain new spectral sequences). We first prove the naturality of the resolutions in their arguments. Next, we show that when the coefficient domain $L$ is a ring, the term $D^0$ is a sheaf of rings, and all the $D^p$ for $p\geqslant1$ are $D^0$-modules. This allows us to determine typical conditions for the resolution to be soft. It is shown that the resolution $D^*$ is a simplicial object in the sense of Eilenberg–Zilber, and a direct definition is given for multiplication in $D^*$. For completeness, an outline is given for the proof of the following fact (communicated to the author by A. V. Zarelua): in the case of a regular finite-sheeted covering, the spectral sequence corresponding to the resolution $D^*$ is isomorphic to the Cartan spectral sequence. Bibliography: 8 titles.
@article{SM_1971_15_2_a3,
     author = {G. S. Skordev},
     title = {Resolutions corresponding to closed mappings},
     journal = {Sbornik. Mathematics},
     pages = {227--240},
     year = {1971},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a3/}
}
TY  - JOUR
AU  - G. S. Skordev
TI  - Resolutions corresponding to closed mappings
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 227
EP  - 240
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_2_a3/
LA  - en
ID  - SM_1971_15_2_a3
ER  - 
%0 Journal Article
%A G. S. Skordev
%T Resolutions corresponding to closed mappings
%J Sbornik. Mathematics
%D 1971
%P 227-240
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_15_2_a3/
%G en
%F SM_1971_15_2_a3
G. S. Skordev. Resolutions corresponding to closed mappings. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 227-240. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a3/

[1] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1961

[2] A. V. Zarelua, “Konechnokratnye otobrazheniya topologicheskikh prostranstv i kogomologicheskikh mnogoobrazii”, Sib. matem. zh., 10:1 (1969), 64–92 | MR | Zbl

[3] S. Maklein, Gomologiya, Mir, Moskva, 1966

[4] G. S. Skordev, “O rezolventakh nepreryvnogo otobrazheniya”, Matem. sb., 82(124) (1970), 532–550 | MR | Zbl

[5] P. Khilton, S. Uaili, Teoriya gomologii, vvedenie v algebraicheskuyu topologiyu, Mir, Moskva, 1966

[6] Cohomology des groupes, Suite spectrale, faisceaux, Seminaire H. Cartan, E. N. S., 3 anée, 1950/1951

[7] L. Kaup, M. Keane, “Inductive limiten endlich erzeugten freier Moduln”, Manuscr. Math., 1 (1969), 9–21 | DOI | MR | Zbl

[8] N. Steenrod, “Product of cocycles and extensions of mappings”, Ann. Math., 48:2 (1947), 290–320 | DOI | MR | Zbl