Spaces of network functions
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 183-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, difference analogs of Sobolev–Slobodetskii spaces are studied: $H_s(\Omega)$, where $\Omega$ is either the whole space or a halfspace. One obtains difference analogs of imbedding theorems, on traces and on extensions of network functions from a halfspace to the whole space with preservation of class. Bibliography: 19 titles.
@article{SM_1971_15_2_a2,
     author = {L. S. Frank},
     title = {Spaces of network functions},
     journal = {Sbornik. Mathematics},
     pages = {183--226},
     year = {1971},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a2/}
}
TY  - JOUR
AU  - L. S. Frank
TI  - Spaces of network functions
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 183
EP  - 226
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_2_a2/
LA  - en
ID  - SM_1971_15_2_a2
ER  - 
%0 Journal Article
%A L. S. Frank
%T Spaces of network functions
%J Sbornik. Mathematics
%D 1971
%P 183-226
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_15_2_a2/
%G en
%F SM_1971_15_2_a2
L. S. Frank. Spaces of network functions. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 183-226. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a2/

[1] S. L. Sobolev, “Ob odnoi kraevoi zadache dlya poligarmonicheskikh uravnenii”, Matem. sb., 2(44):3 (1937), 465–499 | MR | Zbl

[2] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, Leningrad, 1950

[3] N. Aronszain, “Boundary value of functions with finite Dirichlet integral”, Teen. Report, no. 14, Univ. of Kansas, 1955, 77–94

[4] L. N. Slobodetskii, “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uchenye zapiski LGPI im. Gertsena, fiz.-matem. fakultet, 197 (1958), 54–112

[5] J. Peetre, “Another approach to elliptic boundary value problems”, Comm. Pure Appl. Math., 14:4 (1961), 711–713 ; Matematika, 7:1 (1963), 43–65 | DOI | MR

[6] S. M. Nikolskii, Teoriya approksimatsii differentsiruemykh funktsii mnogikh peremennykh i teoremy prodolzheniya, Nauka, Moskva, 1968

[7] J. L. Lions, E. Magenes, Problèmes aux limites non homogenès et applications, 1, Paris, 1968

[8] J. Peetre, Elliptic partial differential equations of higher order, Lecture Notes, no. 40, Inst. for fluid Dynamics, Univ. of Mariland, 1962

[9] S. K. Godunov, V. S. Ryabenkii, Vvedenie v teoriyu raznostnykh skhem, Fizmatgiz, Moskva, 1962

[10] I. H. Bramble, B. E. Hubbard, “A theorem on error estimation for finite difference analogues of Dirichlet problem for elliptic equations”, Contributions to Differential Equations, 2 (1963), 319–340 | MR | Zbl

[11] H. H. Yatsenko, Vvedenie v raznostnye metody matematicheskoi fiziki, Novosib. un-t, Novosibirsk, 1968

[12] A. A. Samarskii, Lektsii po teme raznostnykh skhem, Nauka, Moskva, 1969 | MR

[13] V. Thomée, “Elliptic difference operators and Dirichlet problem”, Contribution to Differential Equations, 3 (1964), 301–324 | MR | Zbl

[14] L. S. Frank, “Raznostnye metody resheniya zadachi Koshi dlya nekorrektnykh sistem pervogo poryadka”, Uspekhi matem. nauk, XIX:5(119) (1964), 189–192

[15] V. Thomée, B. Westergren, “Elliptic difference equations and interior regularity”, Numer. Math., 11 (1968), 196–210 | DOI | MR | Zbl

[16] L. S. Frank, Raznostnye operatory v svertkakh, DAN SSSR, 181, no. 2, 1968 | Zbl

[17] L. S. Frank, “Koertsitivnye kraevye zadachi dlya ellipticheskikh raznostnykh operatorov”, DAN SSSR, 192:1 (1970), 42–45 | Zbl

[18] L. Schwartz, Théorie des distributions, v. I, II, Hermanne, Paris, 1951 | MR | Zbl

[19] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, Moskva, 1965 | MR