On normalizers in the braid group
Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 167-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $N_A$ be the normalizer of an element $A$ in the braid broup $\mathfrak B_{n+1}$. It is shown that $N_A$ is finitely generated, and a method for finding generators for $N_A$ is indicated. Bibliography: 4 titles.
@article{SM_1971_15_2_a0,
     author = {G. S. Makanin},
     title = {On normalizers in the braid group},
     journal = {Sbornik. Mathematics},
     pages = {167--175},
     year = {1971},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_2_a0/}
}
TY  - JOUR
AU  - G. S. Makanin
TI  - On normalizers in the braid group
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 167
EP  - 175
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_2_a0/
LA  - en
ID  - SM_1971_15_2_a0
ER  - 
%0 Journal Article
%A G. S. Makanin
%T On normalizers in the braid group
%J Sbornik. Mathematics
%D 1971
%P 167-175
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_15_2_a0/
%G en
%F SM_1971_15_2_a0
G. S. Makanin. On normalizers in the braid group. Sbornik. Mathematics, Tome 15 (1971) no. 2, pp. 167-175. http://geodesic.mathdoc.fr/item/SM_1971_15_2_a0/

[1] E. Artin, “Theorie der Zöpfe”, Abh. Math. Semin. Hamburg Univ., 4 (1926), 47–72 | DOI

[2] E. Artin, “Theory of Braids”, Ann. Math., 48 (1947), 101–126 | DOI | MR | Zbl

[3] F. A. Carside, “On the braid group and other groups”, Quart. J. Math. Oxford, 20:78 (1969), 235–254 | DOI | MR

[4] G. Burde, “Über Normalisatoren der Zopfgruppe”, Abh. math. Semin. Hamburg Univ., 27 (1964), 97–115 | DOI | MR | Zbl