Three-dimensional quartics and counterexamples to the L\"uroth problem
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 141-166
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that any birational mapping between smooth hypersurfaces of degree four is an isomorphism. Since B. Segre constructed examples of smooth unirational quartics, this leads to a negative resolution of the three-dimensioal Lüroth problem.
Bibliography: 13 titles.
@article{SM_1971_15_1_a7,
author = {V. A. Iskovskikh and Yu. I. Manin},
title = {Three-dimensional quartics and counterexamples to the {L\"uroth} problem},
journal = {Sbornik. Mathematics},
pages = {141--166},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/}
}
V. A. Iskovskikh; Yu. I. Manin. Three-dimensional quartics and counterexamples to the L\"uroth problem. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 141-166. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/