Three-dimensional quartics and counterexamples to the Lüroth problem
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 141-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove that any birational mapping between smooth hypersurfaces of degree four is an isomorphism. Since B. Segre constructed examples of smooth unirational quartics, this leads to a negative resolution of the three-dimensioal Lüroth problem. Bibliography: 13 titles.
@article{SM_1971_15_1_a7,
     author = {V. A. Iskovskikh and Yu. I. Manin},
     title = {Three-dimensional quartics and counterexamples to the {L\"uroth} problem},
     journal = {Sbornik. Mathematics},
     pages = {141--166},
     year = {1971},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
AU  - Yu. I. Manin
TI  - Three-dimensional quartics and counterexamples to the Lüroth problem
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 141
EP  - 166
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/
LA  - en
ID  - SM_1971_15_1_a7
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%A Yu. I. Manin
%T Three-dimensional quartics and counterexamples to the Lüroth problem
%J Sbornik. Mathematics
%D 1971
%P 141-166
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/
%G en
%F SM_1971_15_1_a7
V. A. Iskovskikh; Yu. I. Manin. Three-dimensional quartics and counterexamples to the Lüroth problem. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 141-166. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/

[1] S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, Academic Press, New York–London, 1966 | MR | Zbl

[2] A. Borel, J. P. Serre, “Le theoreme de Riemann–Roch”, Bull. Soc. Math. France, 86 (1958), 97–136 | MR | Zbl

[3] G. Fano, “Sopra aleune varieta algebriche a tre dimensioni aventi tutti i generi nulli”, Atti Ace. Torino, 43 (1907–1908), 973–977

[4] G. Fano, “Osservazioni sopra aleune varieta non razionali aventi tutti i generi nulli”, Atti Ace. Torino, 50 (1915), 1067–1071

[5] G. Fano, “Nuove ricerche sulle varieta algebriche a tre dimensione a curve-sezioni canoniche”, Comm. Pont. Ac. Sci., 11 (1947), 635–720 | MR | Zbl

[6] A. Grothendiesk, Sur quelques proprietes fondamentales en theorie des intersection, Seminaire Chevalley “Anneaux de Chow”, Paris, 1958

[7] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero”, Ann. Math., 79 (1964), 109–326 | DOI | MR | Zbl

[8] V. A. Iskovskikh, “Ratsionalnye poverkhnosti s puchkom ratsionalnykh krivykh”, Matem. sb., 74(116) (1967), 608–638 | Zbl

[9] Yu. I. Manin, “Sootvetstviya, motivy i monoidalnye preobrazovaniya”, Matem. sb., 77(119) (1968), 475–507 | MR | Zbl

[10] Yu. I. Manin, “Ratsionalnye poverkhnosti nad sovershennymi polyami. II”, Matem. sb., 72(114) (1967), 161–192 | MR | Zbl

[11] L. Roth, Algebraic threefolds with special regard to problems of rationality, Springer, Berlin, 1955 | MR

[12] B. Segre, “Variazione continua ad omotopia in geometria algebrica”, Ann. Mat. Pura ed Appl, Ser. IV, L (1960), 149–186 | DOI | MR

[13] O. Zariski, “Reduction of singularities of algebraic threedimensional varieties”, Ann. Math., 45 (1944), 472–542 | DOI | MR | Zbl