Three-dimensional quartics and counterexamples to the L\"uroth problem
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 141-166

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that any birational mapping between smooth hypersurfaces of degree four is an isomorphism. Since B. Segre constructed examples of smooth unirational quartics, this leads to a negative resolution of the three-dimensioal Lüroth problem. Bibliography: 13 titles.
@article{SM_1971_15_1_a7,
     author = {V. A. Iskovskikh and Yu. I. Manin},
     title = {Three-dimensional quartics and counterexamples to the {L\"uroth} problem},
     journal = {Sbornik. Mathematics},
     pages = {141--166},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
AU  - Yu. I. Manin
TI  - Three-dimensional quartics and counterexamples to the L\"uroth problem
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 141
EP  - 166
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/
LA  - en
ID  - SM_1971_15_1_a7
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%A Yu. I. Manin
%T Three-dimensional quartics and counterexamples to the L\"uroth problem
%J Sbornik. Mathematics
%D 1971
%P 141-166
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/
%G en
%F SM_1971_15_1_a7
V. A. Iskovskikh; Yu. I. Manin. Three-dimensional quartics and counterexamples to the L\"uroth problem. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 141-166. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a7/