Elliptic equations in unbounded domains
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 121-140

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear differential operator in $\mathbf R^n$ of elliptic type, with varying coefficients, is considered along with a boundary value problem for such an operator in the exterior of a bounded region. Certain conditions on the symbol of the operator are assumed, the formulation of which involves lower-order terms. The study is carried out in Sobolev spaces with weighting. The weighting is constructed with respect to the coefficients of the equation. The coefficients of the operator may be unbounded at infinity. The principal result is the proof that the operator and corresponding boundary value problem are Noetherian. Bibliography: 10 titles.
@article{SM_1971_15_1_a6,
     author = {L. A. Bagirov},
     title = {Elliptic equations in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {121--140},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a6/}
}
TY  - JOUR
AU  - L. A. Bagirov
TI  - Elliptic equations in unbounded domains
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 121
EP  - 140
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_1_a6/
LA  - en
ID  - SM_1971_15_1_a6
ER  - 
%0 Journal Article
%A L. A. Bagirov
%T Elliptic equations in unbounded domains
%J Sbornik. Mathematics
%D 1971
%P 121-140
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_15_1_a6/
%G en
%F SM_1971_15_1_a6
L. A. Bagirov. Elliptic equations in unbounded domains. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 121-140. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a6/