On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 75-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $P$ be a differential operator of the form $$ P=-\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\varphi(x)\frac\partial{\partial x_j}\biggr)+a_0(x) $$ in the domain $G\subseteq\mathbf R^n$ which has smooth boundary. The asymptotic distribution of the eigenvalues of this operator is studied in this paper. Under certain conditions on $\varphi(x)$ and $a_{ij}(x)$, lower and upper estimates for the number of eigenvalues of $P$ are obtained. Bibliography: 2 titles.
@article{SM_1971_15_1_a3,
author = {V. N. Tulovskii},
title = {On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order},
journal = {Sbornik. Mathematics},
pages = {75--87},
year = {1971},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/}
}
V. N. Tulovskii. On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/
[1] M. S. Baouendi, C. Goulaouic, “Régularite et théorie spectrale pour une classe d'operateurs elliptique dégénérés”, Arch. Rational Mech. and Anal., 34:5 (1969), 361–379 | DOI | MR | Zbl
[2] I. N. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, Moskva, 1963