On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 75-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a differential operator of the form $$ P=-\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\varphi(x)\frac\partial{\partial x_j}\biggr)+a_0(x) $$ in the domain $G\subseteq\mathbf R^n$ which has smooth boundary. The asymptotic distribution of the eigenvalues of this operator is studied in this paper. Under certain conditions on $\varphi(x)$ and $a_{ij}(x)$, lower and upper estimates for the number of eigenvalues of $P$ are obtained. Bibliography: 2 titles.
@article{SM_1971_15_1_a3,
     author = {V. N. Tulovskii},
     title = {On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order},
     journal = {Sbornik. Mathematics},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/}
}
TY  - JOUR
AU  - V. N. Tulovskii
TI  - On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 75
EP  - 87
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/
LA  - en
ID  - SM_1971_15_1_a3
ER  - 
%0 Journal Article
%A V. N. Tulovskii
%T On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order
%J Sbornik. Mathematics
%D 1971
%P 75-87
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/
%G en
%F SM_1971_15_1_a3
V. N. Tulovskii. On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/