On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order
Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 75-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P$ be a differential operator of the form
$$
P=-\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\varphi(x)\frac\partial{\partial x_j}\biggr)+a_0(x)
$$
in the domain $G\subseteq\mathbf R^n$ which has smooth boundary.
The asymptotic distribution of the eigenvalues of this operator is studied
in this paper. Under certain conditions on $\varphi(x)$ and $a_{ij}(x)$, lower
and upper estimates for the number of eigenvalues of $P$ are obtained.
Bibliography: 2 titles.
@article{SM_1971_15_1_a3,
author = {V. N. Tulovskii},
title = {On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order},
journal = {Sbornik. Mathematics},
pages = {75--87},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/}
}
TY - JOUR AU - V. N. Tulovskii TI - On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order JO - Sbornik. Mathematics PY - 1971 SP - 75 EP - 87 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/ LA - en ID - SM_1971_15_1_a3 ER -
V. N. Tulovskii. On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order. Sbornik. Mathematics, Tome 15 (1971) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/SM_1971_15_1_a3/