Interrelations between the Tate and Hodge conjectures for Abelian varieties
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 615-624
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper the action of the Galois group $G(\overline k\mid k)$ on $H_l^m(A)$ is investigated, where $A$ is an Abelian variety defined over a field $k$ of characteristic zero. We prove that the Galois group acts on the rational cohomology classes of type $(p,p)$ as far as they are algebraic.
Bibliography: 10 titles.
@article{SM_1971_14_4_a9,
author = {I. I. Pyatetskii-Shapiro},
title = {Interrelations between the {Tate} and {Hodge} conjectures for {Abelian} varieties},
journal = {Sbornik. Mathematics},
pages = {615--624},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a9/}
}
I. I. Pyatetskii-Shapiro. Interrelations between the Tate and Hodge conjectures for Abelian varieties. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 615-624. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a9/