Interrelations between the Tate and Hodge conjectures for Abelian varieties
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 615-624

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the action of the Galois group $G(\overline k\mid k)$ on $H_l^m(A)$ is investigated, where $A$ is an Abelian variety defined over a field $k$ of characteristic zero. We prove that the Galois group acts on the rational cohomology classes of type $(p,p)$ as far as they are algebraic. Bibliography: 10 titles.
@article{SM_1971_14_4_a9,
     author = {I. I. Pyatetskii-Shapiro},
     title = {Interrelations between the {Tate} and {Hodge} conjectures for {Abelian} varieties},
     journal = {Sbornik. Mathematics},
     pages = {615--624},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a9/}
}
TY  - JOUR
AU  - I. I. Pyatetskii-Shapiro
TI  - Interrelations between the Tate and Hodge conjectures for Abelian varieties
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 615
EP  - 624
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_4_a9/
LA  - en
ID  - SM_1971_14_4_a9
ER  - 
%0 Journal Article
%A I. I. Pyatetskii-Shapiro
%T Interrelations between the Tate and Hodge conjectures for Abelian varieties
%J Sbornik. Mathematics
%D 1971
%P 615-624
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_4_a9/
%G en
%F SM_1971_14_4_a9
I. I. Pyatetskii-Shapiro. Interrelations between the Tate and Hodge conjectures for Abelian varieties. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 615-624. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a9/