On a condition for twofold transitivity of a primitive group of permutations
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 582-586
Cet article a éte moissonné depuis la source Math-Net.Ru
The following generalization of the well-known Frobenius theorem is proved: Let $G$ be a primitive group of permutations of a set $W=X\cup Y \cup Z$. If $G$ contains a subgroup $H$ which operates trivially on $X$ and primitively on $Y$ and $Z$, and if $|X|\geqslant2$, then $G$ is doubly transitive. Bibliography: 2 titles.
@article{SM_1971_14_4_a7,
author = {V. D. Antopol'skii},
title = {On a~condition for twofold transitivity of a~primitive group of permutations},
journal = {Sbornik. Mathematics},
pages = {582--586},
year = {1971},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a7/}
}
V. D. Antopol'skii. On a condition for twofold transitivity of a primitive group of permutations. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 582-586. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a7/