On a condition for twofold transitivity of a primitive group of permutations
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 582-586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following generalization of the well-known Frobenius theorem is proved: Let $G$ be a primitive group of permutations of a set $W=X\cup Y \cup Z$. If $G$ contains a subgroup $H$ which operates trivially on $X$ and primitively on $Y$ and $Z$, and if $|X|\geqslant2$, then $G$ is doubly transitive. Bibliography: 2 titles.
@article{SM_1971_14_4_a7,
     author = {V. D. Antopol'skii},
     title = {On a~condition for twofold transitivity of a~primitive group of permutations},
     journal = {Sbornik. Mathematics},
     pages = {582--586},
     year = {1971},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a7/}
}
TY  - JOUR
AU  - V. D. Antopol'skii
TI  - On a condition for twofold transitivity of a primitive group of permutations
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 582
EP  - 586
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_4_a7/
LA  - en
ID  - SM_1971_14_4_a7
ER  - 
%0 Journal Article
%A V. D. Antopol'skii
%T On a condition for twofold transitivity of a primitive group of permutations
%J Sbornik. Mathematics
%D 1971
%P 582-586
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_14_4_a7/
%G en
%F SM_1971_14_4_a7
V. D. Antopol'skii. On a condition for twofold transitivity of a primitive group of permutations. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 582-586. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a7/

[1] M. Kholl, Teoriya grupp, IL, Moskva, 1962

[2] D. G. Higman, “Finite permutation groups of rank $3$”, Math. Z., 86:2 (1964), 145–156 | DOI | MR | Zbl