On representation by Dirichlet series of functions analytic in a~halfplane
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 565-581

Voir la notice de l'article provenant de la source Math-Net.Ru

The author has proved (RZhMat., 1969, 12B169) that every entire function can be represented by a Dirichlet series in the complex plane. In a more recent paper (Mat. Sb. (N.S.) 81(123) (1970), 552–579) he proved that if $D$ is a bounded open convex domain, then every function analytic in $D$ can be represented in $D$ by a Dirichlet series. This left open the question of the possible representation by Dirichlet series of functions analytic in an unbounded convex domain other than the entire plane, for example, a halfplane. Here it is proved that if $D$ is an unbounded open convex domain whose boundary consists of a finite number of line segments (for example, a halfplane, angle, or strip), then every function analytic in $D$ can be represented in $D$ by a Dirichlet series. Bibliography: 7 titles.
@article{SM_1971_14_4_a6,
     author = {A. F. Leont'ev},
     title = {On representation by {Dirichlet} series of functions analytic in a~halfplane},
     journal = {Sbornik. Mathematics},
     pages = {565--581},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a6/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - On representation by Dirichlet series of functions analytic in a~halfplane
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 565
EP  - 581
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_4_a6/
LA  - en
ID  - SM_1971_14_4_a6
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T On representation by Dirichlet series of functions analytic in a~halfplane
%J Sbornik. Mathematics
%D 1971
%P 565-581
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_4_a6/
%G en
%F SM_1971_14_4_a6
A. F. Leont'ev. On representation by Dirichlet series of functions analytic in a~halfplane. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 565-581. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a6/