Verbal products of Magnus groups
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 501-524
Voir la notice de l'article provenant de la source Math-Net.Ru
A Magnus group is a group in which the intersection of the lower central series is trivial and its factors are torsion free.
The main result of the paper is the following theorem.
Theorem. If $\mathfrak B$ is the variety of all nilpotent groups of a certain class or the variety of all metabelian groups, or their intersection, and if free groups of $\mathfrak B$ and of $\mathfrak U\mathfrak B$ are Magnus groups, then the $\mathfrak U\mathfrak B$-product of any Magnus $\mathfrak B$-groups is a Magnus group. Bibliography: 18 titles.
@article{SM_1971_14_4_a2,
author = {D. I. \`Eidel'kind},
title = {Verbal products of {Magnus} groups},
journal = {Sbornik. Mathematics},
pages = {501--524},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/}
}
D. I. Èidel'kind. Verbal products of Magnus groups. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 501-524. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/