Verbal products of Magnus groups
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 501-524

Voir la notice de l'article provenant de la source Math-Net.Ru

A Magnus group is a group in which the intersection of the lower central series is trivial and its factors are torsion free. The main result of the paper is the following theorem. Theorem. If $\mathfrak B$ is the variety of all nilpotent groups of a certain class or the variety of all metabelian groups, or their intersection, and if free groups of $\mathfrak B$ and of $\mathfrak U\mathfrak B$ are Magnus groups, then the $\mathfrak U\mathfrak B$-product of any Magnus $\mathfrak B$-groups is a Magnus group. Bibliography: 18 titles.
@article{SM_1971_14_4_a2,
     author = {D. I. \`Eidel'kind},
     title = {Verbal products of {Magnus} groups},
     journal = {Sbornik. Mathematics},
     pages = {501--524},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/}
}
TY  - JOUR
AU  - D. I. Èidel'kind
TI  - Verbal products of Magnus groups
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 501
EP  - 524
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/
LA  - en
ID  - SM_1971_14_4_a2
ER  - 
%0 Journal Article
%A D. I. Èidel'kind
%T Verbal products of Magnus groups
%J Sbornik. Mathematics
%D 1971
%P 501-524
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/
%G en
%F SM_1971_14_4_a2
D. I. Èidel'kind. Verbal products of Magnus groups. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 501-524. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/