Verbal products of Magnus groups
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 501-524 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Magnus group is a group in which the intersection of the lower central series is trivial and its factors are torsion free. The main result of the paper is the following theorem. Theorem. If $\mathfrak B$ is the variety of all nilpotent groups of a certain class or the variety of all metabelian groups, or their intersection, and if free groups of $\mathfrak B$ and of $\mathfrak U\mathfrak B$ are Magnus groups, then the $\mathfrak U\mathfrak B$-product of any Magnus $\mathfrak B$-groups is a Magnus group. Bibliography: 18 titles.
@article{SM_1971_14_4_a2,
     author = {D. I. \`Eidel'kind},
     title = {Verbal products of {Magnus} groups},
     journal = {Sbornik. Mathematics},
     pages = {501--524},
     year = {1971},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/}
}
TY  - JOUR
AU  - D. I. Èidel'kind
TI  - Verbal products of Magnus groups
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 501
EP  - 524
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/
LA  - en
ID  - SM_1971_14_4_a2
ER  - 
%0 Journal Article
%A D. I. Èidel'kind
%T Verbal products of Magnus groups
%J Sbornik. Mathematics
%D 1971
%P 501-524
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/
%G en
%F SM_1971_14_4_a2
D. I. Èidel'kind. Verbal products of Magnus groups. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 501-524. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a2/

[1] G. Baumslag, “Groups with the same lower central sequence as a relatively free group. I. The Groups”, Trans. Amer. Math. Soc., 129:2 (1967), 308–321 | DOI | MR | Zbl

[2] A. L. Shmelkin, “O nizhnem tsentralnom ryade svobodnogo proizvedeniya grupp”, Algebra i logika, 8:1 (1969), 129–137

[3] Yu. M. Gorchakov, “Kommutatornye podgruppy”, Sib. matem. zh., 10:5 (1969), 1023–1033

[4] R. Ree, “Commutator groups of free products of torsion-free abelian groups”, Ann. Math., 66 (1957), 380–394 | DOI | MR | Zbl

[5] G. Baumslag, “On the residual nilpotence of some varietal products”, Trans. Amer. Math. Soc., 109 (1963), 357–365 | DOI | MR | Zbl

[6] A. L. Shmelkin, “O svobodnykh proizvedeniyakh grupp”, Matem. sb., 79(121) (1969), 616–620 | Zbl

[7] A. L. Shmelkin, “Spleteniya algebr Li i ikh primenenie v teorii grupp”, Desyatyi Vsesoyuznyi algebraicheskii kollokvium. Rezyume soobschenii i dokladov, t. I, Novosibirsk, 1969, 31–32

[8] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[9] A. I. Shirshov, “Podalgebry svobodnykh algebr Li”, Matem. sb., 33(75) (1953), 441–452 | Zbl

[10] A. I. Shirshov, “O bazakh svobodnykh algebr Li”, Algebra i logika, 1:1 (1961), 14–19

[11] A. I. Shirshov, “Ob odnoi gipoteze teorii algebr Li”, Sib. matem. zh., 3:2 (1962), 297–301 | Zbl

[12] A. L. Shmelkin, “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR, seriya matem., 28 (1964), 91–122 | Zbl

[13] K. K. Andreev, “Nilpotentnye gruppy i lievy algebry”, Algebra i logika, 7:4 (1968), 4–14 | MR | Zbl

[14] K. K. Andreev, “Nilpotentnye gruppy i lievy algebry. II”, Algebra i logika, 8:6 (1969), 625–635 | Zbl

[15] A. I. Maltsev, “Ob algebrakh s tozhdestvennymi opredelyayuschimi sootnosheniyami”, Matem. sb., 26(68) (1950), 19–33 | Zbl

[16] A. I. Maltsev, “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25(67) (1949), 347–366 | Zbl

[17] A. L. Shmelkin, “Nilpotentnye proizvedeniya k nilpotentnye gruppy bez krucheniya”, Sib. matem. zh., 3:4 (1962), 625–640 | Zbl

[18] E. Witt, “Die Unterringe der freien Lieschen Ringe”, Math. Z., 64 (1956), 195–216 | DOI | MR | Zbl