On uniqueness classes for degenerating parabolic equations
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 453-469

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the uniqueness classes of a generalized solution of the Cauchy problem \begin{equation} u_t=\frac12\sum_{i,j=1}^na_{ij}(x)u_{x_ix_j}+\sum_{i=1}^na_i(x)u_{x_i}\equiv Lu,\quad u(0,x)=\varphi(x),\quad x\in\mathbf R^n,\ t\in[0,T], \end{equation} when the matrix $\bigl\{a_{ij}(x)\bigr\}$ is degenerate. A generalized solution is introduced with the help of an infinitesimal operator of a Markov process connected with the operator in (1). In the proof of the theorems we use probabilistic characteristics of this process. Bibliography: 11 titles.
@article{SM_1971_14_4_a0,
     author = {I. M. Sonin},
     title = {On uniqueness classes for degenerating parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {453--469},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a0/}
}
TY  - JOUR
AU  - I. M. Sonin
TI  - On uniqueness classes for degenerating parabolic equations
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 453
EP  - 469
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_4_a0/
LA  - en
ID  - SM_1971_14_4_a0
ER  - 
%0 Journal Article
%A I. M. Sonin
%T On uniqueness classes for degenerating parabolic equations
%J Sbornik. Mathematics
%D 1971
%P 453-469
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_4_a0/
%G en
%F SM_1971_14_4_a0
I. M. Sonin. On uniqueness classes for degenerating parabolic equations. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 453-469. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a0/