On uniqueness classes for degenerating parabolic equations
Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 453-469
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the uniqueness classes of a generalized solution of the Cauchy problem
\begin{equation}
u_t=\frac12\sum_{i,j=1}^na_{ij}(x)u_{x_ix_j}+\sum_{i=1}^na_i(x)u_{x_i}\equiv Lu,\quad
u(0,x)=\varphi(x),\quad x\in\mathbf R^n,\ t\in[0,T],
\end{equation}
when the matrix $\bigl\{a_{ij}(x)\bigr\}$ is degenerate. A generalized solution is introduced with the help of an infinitesimal operator of a Markov process connected with the operator in (1). In the proof of the theorems we use probabilistic characteristics of this process.
Bibliography: 11 titles.
@article{SM_1971_14_4_a0,
author = {I. M. Sonin},
title = {On uniqueness classes for degenerating parabolic equations},
journal = {Sbornik. Mathematics},
pages = {453--469},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_4_a0/}
}
I. M. Sonin. On uniqueness classes for degenerating parabolic equations. Sbornik. Mathematics, Tome 14 (1971) no. 4, pp. 453-469. http://geodesic.mathdoc.fr/item/SM_1971_14_4_a0/