Absolute convergence of Fourier series over complete orthonormal systems of functions
Sbornik. Mathematics, Tome 14 (1971) no. 3, pp. 429-437

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper results of the type of the Bernstein–Saks theorem and Carleman's singularity are established for arbitrary complete orthonormal systems, as well as for any countable family of such systems. The method of proof is based on utilizing series with random arrangement of signs. Bibliography: 5 titles.
@article{SM_1971_14_3_a7,
     author = {S. V. Bochkarev},
     title = {Absolute convergence of {Fourier} series over complete orthonormal systems of functions},
     journal = {Sbornik. Mathematics},
     pages = {429--437},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_3_a7/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Absolute convergence of Fourier series over complete orthonormal systems of functions
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 429
EP  - 437
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_3_a7/
LA  - en
ID  - SM_1971_14_3_a7
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Absolute convergence of Fourier series over complete orthonormal systems of functions
%J Sbornik. Mathematics
%D 1971
%P 429-437
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_3_a7/
%G en
%F SM_1971_14_3_a7
S. V. Bochkarev. Absolute convergence of Fourier series over complete orthonormal systems of functions. Sbornik. Mathematics, Tome 14 (1971) no. 3, pp. 429-437. http://geodesic.mathdoc.fr/item/SM_1971_14_3_a7/