The Cauchy–Weil formula for differential forms
Sbornik. Mathematics, Tome 14 (1971) no. 3, pp. 383-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper one constructs and proves an analog to the Cauchy–Weil formula for differential forms on analytic polyhedra. On the way one obtains a proof for the Martinelli–Bochner formula for differential forms on domains in $\mathbf C^n$. Bibliography: 3 titles.
@article{SM_1971_14_3_a4,
     author = {P. L. Polyakov},
     title = {The {Cauchy{\textendash}Weil} formula for differential forms},
     journal = {Sbornik. Mathematics},
     pages = {383--398},
     year = {1971},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_3_a4/}
}
TY  - JOUR
AU  - P. L. Polyakov
TI  - The Cauchy–Weil formula for differential forms
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 383
EP  - 398
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_3_a4/
LA  - en
ID  - SM_1971_14_3_a4
ER  - 
%0 Journal Article
%A P. L. Polyakov
%T The Cauchy–Weil formula for differential forms
%J Sbornik. Mathematics
%D 1971
%P 383-398
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_14_3_a4/
%G en
%F SM_1971_14_3_a4
P. L. Polyakov. The Cauchy–Weil formula for differential forms. Sbornik. Mathematics, Tome 14 (1971) no. 3, pp. 383-398. http://geodesic.mathdoc.fr/item/SM_1971_14_3_a4/

[1] V. A. Fuks, Vvedenie v teoriyu analiticheskikh funktsii kompleksnykh peremennykh, Fizmatgiz, Moskva, 1962

[2] W. Koppelman, “The Cauchy integral for differential forms”, Bull. Amer. Math. Soc., 73:4 (1967), 554–556 | DOI | MR | Zbl

[3] I. Lieb, Preprint, Gettingen, 1970 | MR