On the order of growth of transcendental entire solutions of algebraic differential equations of second order
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 281-296

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic result is the following. Theorem. A differential equation of the form $P(z,y,y',y'')=0$, where $P(z,u,v,w)$ is a polynomial in the variables $z$, $u$, $v$ and $w$, cannot be satisfied by entire transcendental functions of zero order of growth. Figures: 1. Bibliography: 10 titles.
@article{SM_1971_14_2_a7,
     author = {V. V. Zimoglyad},
     title = {On the order of growth of transcendental entire solutions of algebraic differential equations of second order},
     journal = {Sbornik. Mathematics},
     pages = {281--296},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/}
}
TY  - JOUR
AU  - V. V. Zimoglyad
TI  - On the order of growth of transcendental entire solutions of algebraic differential equations of second order
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 281
EP  - 296
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/
LA  - en
ID  - SM_1971_14_2_a7
ER  - 
%0 Journal Article
%A V. V. Zimoglyad
%T On the order of growth of transcendental entire solutions of algebraic differential equations of second order
%J Sbornik. Mathematics
%D 1971
%P 281-296
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/
%G en
%F SM_1971_14_2_a7
V. V. Zimoglyad. On the order of growth of transcendental entire solutions of algebraic differential equations of second order. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 281-296. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/