On the order of growth of transcendental entire solutions of algebraic differential equations of second order
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 281-296
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic result is the following.
Theorem. A differential equation of the form $P(z,y,y',y'')=0$, where $P(z,u,v,w)$ is a polynomial in the variables $z$, $u$, $v$ and $w$, cannot be satisfied by entire transcendental functions of zero order of growth. Figures: 1.
Bibliography: 10 titles.
@article{SM_1971_14_2_a7,
author = {V. V. Zimoglyad},
title = {On the order of growth of transcendental entire solutions of algebraic differential equations of second order},
journal = {Sbornik. Mathematics},
pages = {281--296},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/}
}
TY - JOUR AU - V. V. Zimoglyad TI - On the order of growth of transcendental entire solutions of algebraic differential equations of second order JO - Sbornik. Mathematics PY - 1971 SP - 281 EP - 296 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/ LA - en ID - SM_1971_14_2_a7 ER -
V. V. Zimoglyad. On the order of growth of transcendental entire solutions of algebraic differential equations of second order. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 281-296. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a7/