Smooth knots in a~fibering over a~circumference
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 252-266

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^n$ be a smooth manifold without boundary, $1\leqslant k\leqslant n$, and let the filtering $M^n = F^n\supset F^{n-1}\supset\dots\supset F^{n-k}=R^{n-k}$ be such that $F^i\subset F^{i+1}$ for each $i$ is an imbedding of a layer in a smooth fibering over $S^1$. In the paper we have obtained an explicit classification of the smooth knots of the sphere $S^m$ in such a manifold $M^n$ under the conditions $m>2$, $n-m>2$. Bibliography: 10 titles.
@article{SM_1971_14_2_a5,
     author = {S. G. Smirnov},
     title = {Smooth knots in a~fibering over a~circumference},
     journal = {Sbornik. Mathematics},
     pages = {252--266},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a5/}
}
TY  - JOUR
AU  - S. G. Smirnov
TI  - Smooth knots in a~fibering over a~circumference
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 252
EP  - 266
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a5/
LA  - en
ID  - SM_1971_14_2_a5
ER  - 
%0 Journal Article
%A S. G. Smirnov
%T Smooth knots in a~fibering over a~circumference
%J Sbornik. Mathematics
%D 1971
%P 252-266
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_2_a5/
%G en
%F SM_1971_14_2_a5
S. G. Smirnov. Smooth knots in a~fibering over a~circumference. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 252-266. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a5/