Smooth knots in a~fibering over a~circumference
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 252-266
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M^n$ be a smooth manifold without boundary, $1\leqslant k\leqslant n$, and let the filtering $M^n = F^n\supset F^{n-1}\supset\dots\supset F^{n-k}=R^{n-k}$ be such that $F^i\subset F^{i+1}$ for each $i$ is an imbedding of a layer in a smooth fibering over $S^1$. In the paper we have obtained an explicit classification of the smooth knots of the sphere $S^m$ in such a manifold $M^n$ under the conditions $m>2$, $n-m>2$.
Bibliography: 10 titles.
@article{SM_1971_14_2_a5,
author = {S. G. Smirnov},
title = {Smooth knots in a~fibering over a~circumference},
journal = {Sbornik. Mathematics},
pages = {252--266},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a5/}
}
S. G. Smirnov. Smooth knots in a~fibering over a~circumference. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 252-266. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a5/