Discrete subgroups of solvable Lie groups of type~$(E)$
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 233-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_1$ and $G_2$ be simply connected Lie groups, and let $\Gamma$ be a lattice in $G_1$. In the present article we investigate the question whether the homomorphism $\mu\colon\Gamma\to G_2$ can be lifted to a homomorphism $\mu\colon G_1\to G_2$ for the case that $G_1$ or $G_2$ is a Lie group of type $(E)$. Incidentally we prove some of the properties of lattices in such groups. Bibliography: 13 titles.
@article{SM_1971_14_2_a4,
     author = {V. V. Gorbatsevich},
     title = {Discrete subgroups of solvable {Lie} groups of type~$(E)$},
     journal = {Sbornik. Mathematics},
     pages = {233--251},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a4/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Discrete subgroups of solvable Lie groups of type~$(E)$
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 233
EP  - 251
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a4/
LA  - en
ID  - SM_1971_14_2_a4
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Discrete subgroups of solvable Lie groups of type~$(E)$
%J Sbornik. Mathematics
%D 1971
%P 233-251
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_2_a4/
%G en
%F SM_1971_14_2_a4
V. V. Gorbatsevich. Discrete subgroups of solvable Lie groups of type~$(E)$. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 233-251. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a4/