Discrete subgroups of solvable Lie groups of type~$(E)$
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 233-251
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G_1$ and $G_2$ be simply connected Lie groups, and let $\Gamma$ be
a lattice in $G_1$. In the present article we investigate the question whether the homomorphism $\mu\colon\Gamma\to G_2$ can be lifted to a homomorphism $\mu\colon G_1\to G_2$ for the case that $G_1$ or $G_2$ is a Lie group of type $(E)$. Incidentally we prove some of the properties of lattices in such groups.
Bibliography: 13 titles.
@article{SM_1971_14_2_a4,
author = {V. V. Gorbatsevich},
title = {Discrete subgroups of solvable {Lie} groups of type~$(E)$},
journal = {Sbornik. Mathematics},
pages = {233--251},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a4/}
}
V. V. Gorbatsevich. Discrete subgroups of solvable Lie groups of type~$(E)$. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 233-251. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a4/