Uniqueness theorems in homology theory
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 199-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For suitable sets of axioms, uniqueness theorems are proved in the following categories: a) countable locally finite polyhedra and proper mappings; b) metrizable compacta; c) locally compact second-countable spaces and proper mappings; d) Hausdorff spaces whose compact subspaces are metrizable; e) paracompact weakly locally contractible spaces. Bibliography: 11 titles.
@article{SM_1971_14_2_a2,
     author = {E. G. Sklyarenko},
     title = {Uniqueness theorems in homology theory},
     journal = {Sbornik. Mathematics},
     pages = {199--218},
     year = {1971},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a2/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Uniqueness theorems in homology theory
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 199
EP  - 218
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a2/
LA  - en
ID  - SM_1971_14_2_a2
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Uniqueness theorems in homology theory
%J Sbornik. Mathematics
%D 1971
%P 199-218
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_14_2_a2/
%G en
%F SM_1971_14_2_a2
E. G. Sklyarenko. Uniqueness theorems in homology theory. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 199-218. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a2/

[1] V. Bartik, “Kogomologii Aleksandrova–Chekha i otobrazheniya v poliedry Eilenberga–Makleina”, Matem. sb., 76(118):2 (1968), 231–238 | MR | Zbl

[2] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1901

[3] E. G. Sklyarenko, “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, XXIV:5(149) (1969), 87–140

[4] N. Stinrod, S. Eilenberg, Osnovaniya algebraicheskoi topologii, IL, Moskva, 1958

[5] A. Borel, J. C. More, “Homology theory for locally compact spaces”, Michigan Math. J., 7 (1960), 137–160 | DOI | MR

[6] H. Freudenthal, “Ober die Entwicklung von Raumen und Gruppen”, Composition Math., 4 (1937), 145–234 | MR | Zbl

[7] D. M. Hyman, “A category slightly larger than the metric and $GW$-categories”, Michigan Math. J., 15:2 (1968), 193–214 | DOI | MR | Zbl

[8] I. James, J. H. C. Whitehead, “Homology with zero coefficients”, Quart. J. Math., 9:36 (1958), 317–320 | DOI | MR | Zbl

[9] C. N. Lee, “The regular convergence theorem”, Michigan Math. J., 14 (1967), 207–217 | DOI | MR | Zbl

[10] J. Milnor, “On axiomatic homology theory”, Pacific J. Math., 12:1 (1962), 337–341 | MR | Zbl

[11] N. E. Steenrod, “Regular cycles of compact metric spaces”, Ann. Math., 41 (1940), 833–851 | DOI | MR | Zbl