Some problems for linear partial differential equations with constant coefficients in the entire space and for a class of degenerate equations in a halfspace
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 186-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space $\mathbf R^{n+1}=\mathbf R_t^1\times\mathbf R_x^n$ we consider a linear partial differential equation with constant coefficients which is solvable in the leading derivative with respect to $t$. We prove that two problems with limit conditions as $t\to-\infty$ which are imposed on the Fourier transform $F_{x\to\sigma}[u(t,x)]$ and contain weight factors, are uniquely solvable in the class of functions $u(t,x)$ which for every $t$ belong to $L_2(\mathbf R_x^n)$ along with the derivatives appearing in the equation and which grow at an order no faster that $t$ as $t\to+\infty$ (in $L_2$). We apply these results to a class of equations in a halfspace which degenerate on the boundary hyperplane. Bibliography: 9 titles.
@article{SM_1971_14_2_a1,
     author = {A. S. Kalashnikov},
     title = {Some problems for linear partial differential equations with constant coefficients in the entire space and for a~class of degenerate equations in a~halfspace},
     journal = {Sbornik. Mathematics},
     pages = {186--198},
     year = {1971},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a1/}
}
TY  - JOUR
AU  - A. S. Kalashnikov
TI  - Some problems for linear partial differential equations with constant coefficients in the entire space and for a class of degenerate equations in a halfspace
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 186
EP  - 198
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a1/
LA  - en
ID  - SM_1971_14_2_a1
ER  - 
%0 Journal Article
%A A. S. Kalashnikov
%T Some problems for linear partial differential equations with constant coefficients in the entire space and for a class of degenerate equations in a halfspace
%J Sbornik. Mathematics
%D 1971
%P 186-198
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_14_2_a1/
%G en
%F SM_1971_14_2_a1
A. S. Kalashnikov. Some problems for linear partial differential equations with constant coefficients in the entire space and for a class of degenerate equations in a halfspace. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 186-198. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a1/

[1] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, Moskva, 1965 | MR

[2] O. A. Oleinik, “O lineinykh uravneniyakh vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Matem. sb., 69(111) (1966), 111–140 | MR | Zbl

[3] M. I. Freidlin, “Markovskie protsessy i differentsialnye uravneniya”, Itogi nauki. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet. 1966, 3, VINITI, Moskva, 1967, 7–58 | MR | Zbl

[4] M. M. Smirnov, Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, Moskva, 1966 | MR

[5] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, DAN SSSR, 77:2 (1951), 181–183

[6] A. V. Bitsadze, Uravneniya smeshannogo tipa, AN SSSR, Moskva, 1959

[7] A. V. Fursikov, “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh operatorov”, Matem. sb., 79(121) (1969), 381–404 | MR | Zbl

[8] V. A. Eleev, “O nekotorykh zadachakh tipa Koshi dlya odnogo vyrozhdayuschegosya uravneniya”, Diff. uravneniya, 6:1 (1970), 196–199 | MR | Zbl

[9] I. M. Gelfand, G. E. Shilov, Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii, vypusk 3, Fizmatgiz, Moskva, 1958 | Zbl