On smooth mappings of the circle into itself
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 161-185
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article is constructed the set $\mathfrak M=\mathfrak M_1\cup\mathfrak M_2$, open and everywhere dense in $C^1(S^1,S^1)$, of $\Omega$-stable mappings. $\Omega(f)$ is totally disconnected and $f/\Omega(f)$ is topologically conjugate to the topological Markov chain with a finite number of states; for $f\in\mathfrak M_2$ we have $\Omega(f)=S^1$ and $f/S^1$ topologically conjugate to $z^n/S^1$. For $f\in\mathfrak M$ there exists a hyperbolic structure onЁ$\Omega(f)$.
Figures: 1
Bibliography: 9 titles.
@article{SM_1971_14_2_a0,
author = {M. V. Jakobson},
title = {On smooth mappings of the circle into itself},
journal = {Sbornik. Mathematics},
pages = {161--185},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a0/}
}
M. V. Jakobson. On smooth mappings of the circle into itself. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 161-185. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a0/