On smooth mappings of the circle into itself
Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 161-185

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article is constructed the set $\mathfrak M=\mathfrak M_1\cup\mathfrak M_2$, open and everywhere dense in $C^1(S^1,S^1)$, of $\Omega$-stable mappings. $\Omega(f)$ is totally disconnected and $f/\Omega(f)$ is topologically conjugate to the topological Markov chain with a finite number of states; for $f\in\mathfrak M_2$ we have $\Omega(f)=S^1$ and $f/S^1$ topologically conjugate to $z^n/S^1$. For $f\in\mathfrak M$ there exists a hyperbolic structure onЁ$\Omega(f)$. Figures: 1 Bibliography: 9 titles.
@article{SM_1971_14_2_a0,
     author = {M. V. Jakobson},
     title = {On smooth mappings of the circle into itself},
     journal = {Sbornik. Mathematics},
     pages = {161--185},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_2_a0/}
}
TY  - JOUR
AU  - M. V. Jakobson
TI  - On smooth mappings of the circle into itself
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 161
EP  - 185
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_2_a0/
LA  - en
ID  - SM_1971_14_2_a0
ER  - 
%0 Journal Article
%A M. V. Jakobson
%T On smooth mappings of the circle into itself
%J Sbornik. Mathematics
%D 1971
%P 161-185
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_2_a0/
%G en
%F SM_1971_14_2_a0
M. V. Jakobson. On smooth mappings of the circle into itself. Sbornik. Mathematics, Tome 14 (1971) no. 2, pp. 161-185. http://geodesic.mathdoc.fr/item/SM_1971_14_2_a0/