Some transversality theorems
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 140-156
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper transversality theorems are proved for canonical transformations, contact transformations, and transformations which preserve volume elements, as well as sections of a fiber bundle whose base and fiber are smooth manifolds. Let $\Omega$ be one of the mapping spaces mentioned, and let $L$ be a smooth submanifold in the space of $r$-jets of the germs of the mappings in $\Omega$. The transversality theorem asserts that a set of mappings in $\Omega$ whose $r$-jet extensions are transversal to $L$ is everywhere dense in $\Omega$. Bibliography: 7 titles.
@article{SM_1971_14_1_a8,
     author = {S. M. Vishik},
     title = {Some transversality theorems},
     journal = {Sbornik. Mathematics},
     pages = {140--156},
     year = {1971},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a8/}
}
TY  - JOUR
AU  - S. M. Vishik
TI  - Some transversality theorems
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 140
EP  - 156
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a8/
LA  - en
ID  - SM_1971_14_1_a8
ER  - 
%0 Journal Article
%A S. M. Vishik
%T Some transversality theorems
%J Sbornik. Mathematics
%D 1971
%P 140-156
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a8/
%G en
%F SM_1971_14_1_a8
S. M. Vishik. Some transversality theorems. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 140-156. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a8/

[1] V. I. Arnold, Lektsii po klassicheskoi mekhanike, t. II, MGU, Moskva, 1968

[2] Dzh. Mezer, “Strukturnaya ustoichivost otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, 1968, 216–267, Mir, Moskva | MR

[3] P. K. Rashevskii, Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, Moskva–Leningrad, 1947

[4] R. Tom, G. Levin, “Osobennosti differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, 1968, 9–102, Mir, Moskva | MR

[5] L. P. Eizenkhart, Nepreryvnye gruppy preobrazovanii, IL, Moskva, 1947

[6] S. Lie, F. Engel, Theorie der Transformationsgruppen, s. 2, Teubner, Leipzig, 1888 (1930)

[7] R. Thom, “Ensembles et morphisms stratifies”, Bull. Amer. Math. Soc., 75:2 (1969), 240–284 | DOI | MR | Zbl