Density of Cauchy initial data for solutions of elliptic equations
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 131-139

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we examine a problem connected with Cauchy's problem for linear elliptic equations. Let $G$ be a bounded region of $E_n$, and let $\Gamma$ be its boundary. In $G$ we consider the elliptic equation \begin{gather*} \mathscr Lu(x)=\sum_{|\mu|\leqslant 2m}a_\mu(x)D^\mu u(x)=0 \tag{1}\\ \biggl(\mu=(\mu_1,\dots,\mu_n);\quad|\mu|=\mu_1+\dots+\mu_n;\quad D^\mu=D_1^{\mu_1}\cdots D_n^{\mu_n},\quad D_k=-i\frac\partial{\partial x_k}\biggr), \end{gather*} where $\mathscr L$ is a regular elliptic expression with complex coefficients. Let $\Gamma_1$ be a piece of the surface $\Gamma$. The coefficients of the expression $\mathscr L$, the surface $\Gamma$, and the boundary $\Gamma_1$ are assumed to be infinitely smooth. We are concerned with Cauchy's problem on $\Gamma_1$ with the initial conditions $\{\partial^{j-1}u/\partial\nu^{j-1}|_{\Gamma_1}=f_j\}$, $j=1,\dots,2m$, where $\nu$ designates the direction normal to $\Gamma$. In this paper we prove that under our assumptions the set of Cauchy initial data for solutions of (1) in $H^l(G)$ is dense in $\sum_{j=1}^{2m}H^{l-j+1/2}(\Gamma_1)$ for any integer $l\geqslant2m$ if Cauchy's problem is unique for the formal conjugate operator $\mathscr L^+$, as is the case, for example, when $\mathscr L$ has no multiple complex characteristics. In addition, in this paper we give conditions under which the analogous assertion holds for certain elliptic systems. Bibliography: 4 titles.
@article{SM_1971_14_1_a7,
     author = {V. I. Voitinskii},
     title = {Density of {Cauchy} initial data for solutions of elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a7/}
}
TY  - JOUR
AU  - V. I. Voitinskii
TI  - Density of Cauchy initial data for solutions of elliptic equations
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 131
EP  - 139
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a7/
LA  - en
ID  - SM_1971_14_1_a7
ER  - 
%0 Journal Article
%A V. I. Voitinskii
%T Density of Cauchy initial data for solutions of elliptic equations
%J Sbornik. Mathematics
%D 1971
%P 131-139
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a7/
%G en
%F SM_1971_14_1_a7
V. I. Voitinskii. Density of Cauchy initial data for solutions of elliptic equations. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 131-139. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a7/