Imbedding of zero-dimensional compacta in~$E^3$
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 99-114

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for an arbitrary zero-dimensional compactum $P$ in $E^3$, a pseudoisotopy $F_t$ of the space $E^3$ onto itself is constructed, taking a tame zero-dimensional compactum $C$ into $P$; here each nondegenerate preimage of a point under the mapping $F_1$ is a tame arc. For the zero-dimensional Antoine compactum $A$ a pseudoisotopy $F_t$ of $E^3$ onto itself is constructed taking a tame zero-dimensional compactum into it so that the mapping $F_1$ has a countable set of nondegenerate primages of points, but each of these is not a locally connected continuum. Bibliography: 11 titles.
@article{SM_1971_14_1_a5,
     author = {E. V. Sandrakova},
     title = {Imbedding of zero-dimensional compacta in~$E^3$},
     journal = {Sbornik. Mathematics},
     pages = {99--114},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/}
}
TY  - JOUR
AU  - E. V. Sandrakova
TI  - Imbedding of zero-dimensional compacta in~$E^3$
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 99
EP  - 114
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/
LA  - en
ID  - SM_1971_14_1_a5
ER  - 
%0 Journal Article
%A E. V. Sandrakova
%T Imbedding of zero-dimensional compacta in~$E^3$
%J Sbornik. Mathematics
%D 1971
%P 99-114
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/
%G en
%F SM_1971_14_1_a5
E. V. Sandrakova. Imbedding of zero-dimensional compacta in~$E^3$. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/