Imbedding of zero-dimensional compacta in~$E^3$
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 99-114
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, for an arbitrary zero-dimensional compactum $P$ in $E^3$, a pseudoisotopy $F_t$ of the space $E^3$ onto itself is constructed, taking
a tame zero-dimensional compactum $C$ into $P$; here each nondegenerate preimage of a point under the mapping $F_1$ is a tame arc.
For the zero-dimensional Antoine compactum $A$ a pseudoisotopy $F_t$ of $E^3$ onto itself is constructed taking a tame zero-dimensional compactum into it so that the mapping $F_1$ has a countable set of nondegenerate primages of points, but each of these is not a locally connected continuum.
Bibliography: 11 titles.
@article{SM_1971_14_1_a5,
author = {E. V. Sandrakova},
title = {Imbedding of zero-dimensional compacta in~$E^3$},
journal = {Sbornik. Mathematics},
pages = {99--114},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/}
}
E. V. Sandrakova. Imbedding of zero-dimensional compacta in~$E^3$. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/