Imbedding of zero-dimensional compacta in $E^3$
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 99-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, for an arbitrary zero-dimensional compactum $P$ in $E^3$, a pseudoisotopy $F_t$ of the space $E^3$ onto itself is constructed, taking a tame zero-dimensional compactum $C$ into $P$; here each nondegenerate preimage of a point under the mapping $F_1$ is a tame arc. For the zero-dimensional Antoine compactum $A$ a pseudoisotopy $F_t$ of $E^3$ onto itself is constructed taking a tame zero-dimensional compactum into it so that the mapping $F_1$ has a countable set of nondegenerate primages of points, but each of these is not a locally connected continuum. Bibliography: 11 titles.
@article{SM_1971_14_1_a5,
     author = {E. V. Sandrakova},
     title = {Imbedding of zero-dimensional compacta in~$E^3$},
     journal = {Sbornik. Mathematics},
     pages = {99--114},
     year = {1971},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/}
}
TY  - JOUR
AU  - E. V. Sandrakova
TI  - Imbedding of zero-dimensional compacta in $E^3$
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 99
EP  - 114
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/
LA  - en
ID  - SM_1971_14_1_a5
ER  - 
%0 Journal Article
%A E. V. Sandrakova
%T Imbedding of zero-dimensional compacta in $E^3$
%J Sbornik. Mathematics
%D 1971
%P 99-114
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/
%G en
%F SM_1971_14_1_a5
E. V. Sandrakova. Imbedding of zero-dimensional compacta in $E^3$. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a5/

[1] I. W. Alexander, “An example of simply connected surface”, Proc. Nat. Acad. Sci. USA, 10 (1924), 6–10 | DOI

[2] I. W. Alexander, “On the deformation of an $n$-cell”, Proc. Nat. Acad. Sci. USA, 9 (1923), 406–407 | DOI | Zbl

[3] S. Armentrout, L. Lininger, D. V. Meyer, “Equivalent decomposition of $E^3$”, Pacific J. Math., 21:2 (1968), 205–227 | MR

[4] R. H. Bing, “Tame Cantor sets in $E^3$”, Pacific J. Math., 11:2 (1961), 435–446 | MR | Zbl

[5] J. F. P. Hudson, E. C. Zeeman, “On regular neighbourhoods”, Proc. London Math. Soc., XIV:56 (1964), 399 | MR

[6] L. V. Keldysh, “Vlozhenie nulmernykh kompaktov v $E^n$”, DAN SSSR, 147:4 (1962), 772–775 | Zbl

[7] D. R. McMillan Jr., “Local proper of the embedding of a graph in $3$-manifolds”, Canad. J. Math., 18:3 (1966), 721–732 | MR

[8] D. E. Sunderson, “Isotopic deformations of $2$-cells and $3$-cells. I”, Duke Math. J., 26 (1959), 912–922

[9] L. V. Keldysh, Topologicheskie vlozheniya v evklidovo prostranstvo, Trudy matem. in-ta im. V. A. Steklova, LXXXI, 1966

[10] L. Antoine, “Sur rhomeomorphie de deux figures et leurs voisinages”, J. Math. Pures et Appl., 4 (1921), 221–325 | Zbl

[11] P. S. Uryson, Trudy po topologii i drugim oblastyam matematiki, t. 1, Fizmatgiz, Moskva, 1951 | MR