Chern classes of ample bundles
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 85-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article “Ample vector bundles”, Publ. Math., № 29, R. Hartshorne has extended the notion of ample vector bundle to vector bundles of arbitrary rank and has raised the following question. Let $\mathscr E$ be an ample vector bundle over a nonsingular algebraic variety $X$ and assume that the rank of $\mathscr E$ is equal to $n$. Is it true that the $i$th Chern class $c_i(\mathscr E)$ is numerically positive for $i\leqslant n$? In this paper it is proved that in the case $\operatorname{dim}X=2$ the degree of the point-cycle $c_2(\mathscr E)$ is positive. Bibliography: 8 titles.
@article{SM_1971_14_1_a4,
     author = {V. M. Barenbaum},
     title = {Chern classes of ample bundles},
     journal = {Sbornik. Mathematics},
     pages = {85--98},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a4/}
}
TY  - JOUR
AU  - V. M. Barenbaum
TI  - Chern classes of ample bundles
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 85
EP  - 98
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a4/
LA  - en
ID  - SM_1971_14_1_a4
ER  - 
%0 Journal Article
%A V. M. Barenbaum
%T Chern classes of ample bundles
%J Sbornik. Mathematics
%D 1971
%P 85-98
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a4/
%G en
%F SM_1971_14_1_a4
V. M. Barenbaum. Chern classes of ample bundles. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a4/