Chern classes of ample bundles
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 85-98
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article “Ample vector bundles”, Publ. Math., № 29, R. Hartshorne has extended the notion of ample vector bundle to vector bundles of arbitrary rank and has raised the following question. Let $\mathscr E$ be an ample vector bundle over a nonsingular algebraic variety $X$ and assume that the rank of $\mathscr E$ is equal to $n$. Is it true that the $i$th Chern class $c_i(\mathscr E)$ is numerically positive for $i\leqslant n$? In this paper it is proved that in the case $\operatorname{dim}X=2$ the degree of the point-cycle $c_2(\mathscr E)$ is positive.
Bibliography: 8 titles.
@article{SM_1971_14_1_a4,
author = {V. M. Barenbaum},
title = {Chern classes of ample bundles},
journal = {Sbornik. Mathematics},
pages = {85--98},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a4/}
}
V. M. Barenbaum. Chern classes of ample bundles. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 85-98. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a4/