The number of closed nonselfintersecting contours on a~planar lattice
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 47-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The generating function is found for the weighted number of closed nonselfintersecting contours on a planar lattice. Figures: 1. Bibliography: 6 titles.
@article{SM_1971_14_1_a2,
     author = {F. A. Berezin},
     title = {The number of closed nonselfintersecting contours on a~planar lattice},
     journal = {Sbornik. Mathematics},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - The number of closed nonselfintersecting contours on a~planar lattice
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 47
EP  - 63
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/
LA  - en
ID  - SM_1971_14_1_a2
ER  - 
%0 Journal Article
%A F. A. Berezin
%T The number of closed nonselfintersecting contours on a~planar lattice
%J Sbornik. Mathematics
%D 1971
%P 47-63
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/
%G en
%F SM_1971_14_1_a2
F. A. Berezin. The number of closed nonselfintersecting contours on a~planar lattice. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/