The number of closed nonselfintersecting contours on a planar lattice
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 47-63
The generating function is found for the weighted number of closed nonselfintersecting contours on a planar lattice. Figures: 1. Bibliography: 6 titles.
@article{SM_1971_14_1_a2,
author = {F. A. Berezin},
title = {The number of closed nonselfintersecting contours on a~planar lattice},
journal = {Sbornik. Mathematics},
pages = {47--63},
year = {1971},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/}
}
F. A. Berezin. The number of closed nonselfintersecting contours on a planar lattice. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/
[1] L. Onsager, “Crystal statistics. I”, Phys. Rev., 65 (1944) | DOI | MR | Zbl
[2] P. W. Kasteleyn, “The statistics of dimers on a lattice”, Physica, 27 (1961), 1209–1225 | DOI
[3] H. N. W. Temperley, M. E. Ficher, “Dimer problem in statistical mechanics”, Phil. Mag., 6 (1961), 1061–1063 | DOI | MR | Zbl
[4] F. A. Berezin, “Ploskaya model Izinga”, Uspekhi matem. nauk, XXIV (1969), 3–22 | MR
[5] E. V. Montroll, Statistika reshetok, Prikladnaya kombinatornaya matematika, Mir, Moskva, 1968
[6] A. France, L'ile des Pinguins ; A. Frans, Sobranie sochinenii, t. 6, Moskva, 1959 | Zbl