The number of closed nonselfintersecting contours on a planar lattice
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 47-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generating function is found for the weighted number of closed nonselfintersecting contours on a planar lattice. Figures: 1. Bibliography: 6 titles.
@article{SM_1971_14_1_a2,
     author = {F. A. Berezin},
     title = {The number of closed nonselfintersecting contours on a~planar lattice},
     journal = {Sbornik. Mathematics},
     pages = {47--63},
     year = {1971},
     volume = {14},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - The number of closed nonselfintersecting contours on a planar lattice
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 47
EP  - 63
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/
LA  - en
ID  - SM_1971_14_1_a2
ER  - 
%0 Journal Article
%A F. A. Berezin
%T The number of closed nonselfintersecting contours on a planar lattice
%J Sbornik. Mathematics
%D 1971
%P 47-63
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/
%G en
%F SM_1971_14_1_a2
F. A. Berezin. The number of closed nonselfintersecting contours on a planar lattice. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a2/

[1] L. Onsager, “Crystal statistics. I”, Phys. Rev., 65 (1944) | DOI | MR | Zbl

[2] P. W. Kasteleyn, “The statistics of dimers on a lattice”, Physica, 27 (1961), 1209–1225 | DOI

[3] H. N. W. Temperley, M. E. Ficher, “Dimer problem in statistical mechanics”, Phil. Mag., 6 (1961), 1061–1063 | DOI | MR | Zbl

[4] F. A. Berezin, “Ploskaya model Izinga”, Uspekhi matem. nauk, XXIV (1969), 3–22 | MR

[5] E. V. Montroll, Statistika reshetok, Prikladnaya kombinatornaya matematika, Mir, Moskva, 1968

[6] A. France, L'ile des Pinguins ; A. Frans, Sobranie sochinenii, t. 6, Moskva, 1959 | Zbl