Regular components of homeomorphisms of the $n$-dimensional sphere
Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the structure of the regular components of homeomorphisms of the $n$-dimensional sphere is studied. Results are obtained which turn out to describe the possible types of regular components, and which generalize to dimensions $n\geqslant3$ the results of Birkhoff and Smith in dimension $2$. As applications we describe the regular components of structurally stable diffeomorphisms of $S^n$ with a finite number of periodic points and the connected components of orbitally stable trajectories of a structurally stable dynamical system on $S^n$ with a finite number of closed trajectories. Bibliography: 6 titles.
@article{SM_1971_14_1_a0,
     author = {S. Kh. Aranson and V. S. Medvedev},
     title = {Regular components of homeomorphisms of the $n$-dimensional sphere},
     journal = {Sbornik. Mathematics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_14_1_a0/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - V. S. Medvedev
TI  - Regular components of homeomorphisms of the $n$-dimensional sphere
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 1
EP  - 14
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_14_1_a0/
LA  - en
ID  - SM_1971_14_1_a0
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A V. S. Medvedev
%T Regular components of homeomorphisms of the $n$-dimensional sphere
%J Sbornik. Mathematics
%D 1971
%P 1-14
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_14_1_a0/
%G en
%F SM_1971_14_1_a0
S. Kh. Aranson; V. S. Medvedev. Regular components of homeomorphisms of the $n$-dimensional sphere. Sbornik. Mathematics, Tome 14 (1971) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1971_14_1_a0/