Duality in the theory of functions of several complex variables
Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 577-588
Cet article a éte moissonné depuis la source Math-Net.Ru
A cohomological theorem is proved concerning duality on a complex analytic manifold, a special case of which is the Köthe–Silva Dias–Grothendieck duality theorem for holomorphic function spaces. Bibliography: 6 titles.
@article{SM_1971_13_4_a5,
author = {V. D. Golovin},
title = {Duality in the theory of functions of several complex variables},
journal = {Sbornik. Mathematics},
pages = {577--588},
year = {1971},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_4_a5/}
}
V. D. Golovin. Duality in the theory of functions of several complex variables. Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 577-588. http://geodesic.mathdoc.fr/item/SM_1971_13_4_a5/
[1] G. Köthe, “Dualität in der Runktionentheorie”, J. Reine und Angew. Math., 191:1/2 (1953), 29–49 | MR
[2] C. L. da Silva Dias, “Espagos vectoriais topologicos e sue apligao ncs espacos funcionais analiticos”, Bol. Soc. Mat. Sao Paulo, 5 (1950), 1–58 | MR
[3] A. Grothendieck, “Sur certains espaces de fonctions holomorphes”, J. Reine und Angew. Math., 192:1 (1953), 35–64 | MR
[4] P. Dolbeaull, “Formes differentiates et cohomologie sur une variete analytique complexe”, Ann. Math., 64:1 (1956), 83–130 | DOI | MR
[5] J. P. Serre, “Un theoreme de dualite”, Comm. Math. Helv., 29:1 (1955), 9–26 | DOI | MR | Zbl
[6] H. B. Laufer, “On Serre duality and envelopes of holomorphy”, Trans. Arner. Math. Soc., 128:3 (1967), 414–436 | DOI | MR | Zbl