On Plücker properties of rings
Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 517-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions are considered of decomposability of $m$-vectors from $\Lambda^m(A^n)$, where $A$ is a commutative ring with $1$, and $A^n$ is the direct sum of $n$ copies of $A$. Let $A$ be a Krull ring. We shall denote by $\operatorname{div}\omega$ the greatest common divisor of the coordinates of the $m$-vector $\omega\in\Lambda^m(A^n)$. For the case where the $\operatorname{div}\omega$ is square-free in terms of the $A$-module $K_\omega=\{x\in A^n:x\land\omega=0\}$ necessary and sufficient conditions are given for decomposability of $\omega$. A characterization of factorial Plücker rings is stated, i.e. rings in which for arbitrary $n>m\geqslant2$ every $m$-vector of $\Lambda^m(A^n)$ which satisfies the Plücker condition is decomposable. Bibliography: 8 titles.
@article{SM_1971_13_4_a1,
     author = {G. B. Kleiner},
     title = {On {Pl\"ucker} properties of rings},
     journal = {Sbornik. Mathematics},
     pages = {517--528},
     year = {1971},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/}
}
TY  - JOUR
AU  - G. B. Kleiner
TI  - On Plücker properties of rings
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 517
EP  - 528
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/
LA  - en
ID  - SM_1971_13_4_a1
ER  - 
%0 Journal Article
%A G. B. Kleiner
%T On Plücker properties of rings
%J Sbornik. Mathematics
%D 1971
%P 517-528
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/
%G en
%F SM_1971_13_4_a1
G. B. Kleiner. On Plücker properties of rings. Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/

[1] A. I. Maltsev, Osnovy lineinoi algebry, Nauka, Moskva, 1970 | Zbl

[2] N. Burbaki, Algebra. Lineinaya i polilineinaya algebra, Fizmatgiz, Moskva, 1962

[3] D. Lissner, “Outer product rings”, Trans. Amer. Math. Soc., 116:4 (1965), 526–535 | DOI | MR | Zbl

[4] J. Towber, “Complete reducibility in exterior algebras over free modules”, J. Algebra, 10:3 (1968), 299–309 | DOI | MR | Zbl

[5] D. Lissner, “Matrices over polinomial rings”, Trans. Amer. Math. Soc., 98:2 (1961) | DOI | MR | Zbl

[6] D. Lissner, “OP-rings and Seshardi's theorem”, J. Algebra, 5:3 (1967), 362–366 | DOI | MR | Zbl

[7] P. Samuel, “Anneaux factoriels”, Bull. Soc. Math. France, 89 (1961), 155–173 | MR | Zbl

[8] N. Bourbaki, Algebre commutative, Chap. 7, Hermann, Paris, 1965 | MR