On Pl\"ucker properties of rings
Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 517-528
Voir la notice de l'article provenant de la source Math-Net.Ru
Questions are considered of decomposability of $m$-vectors from $\Lambda^m(A^n)$, where $A$ is a commutative ring with $1$, and $A^n$ is the direct sum of $n$ copies of $A$.
Let $A$ be a Krull ring. We shall denote by $\operatorname{div}\omega$ the greatest common divisor of the coordinates of the $m$-vector $\omega\in\Lambda^m(A^n)$. For the case where the $\operatorname{div}\omega$ is square-free in terms of the $A$-module $K_\omega=\{x\in A^n:x\land\omega=0\}$ necessary and sufficient conditions are given for decomposability of $\omega$. A characterization of factorial Plücker rings is stated, i.e. rings in which for arbitrary $n>m\geqslant2$ every $m$-vector of $\Lambda^m(A^n)$ which satisfies the Plücker condition is decomposable.
Bibliography: 8 titles.
@article{SM_1971_13_4_a1,
author = {G. B. Kleiner},
title = {On {Pl\"ucker} properties of rings},
journal = {Sbornik. Mathematics},
pages = {517--528},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/}
}
G. B. Kleiner. On Pl\"ucker properties of rings. Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/