On Pl\"ucker properties of rings
Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 517-528

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions are considered of decomposability of $m$-vectors from $\Lambda^m(A^n)$, where $A$ is a commutative ring with $1$, and $A^n$ is the direct sum of $n$ copies of $A$. Let $A$ be a Krull ring. We shall denote by $\operatorname{div}\omega$ the greatest common divisor of the coordinates of the $m$-vector $\omega\in\Lambda^m(A^n)$. For the case where the $\operatorname{div}\omega$ is square-free in terms of the $A$-module $K_\omega=\{x\in A^n:x\land\omega=0\}$ necessary and sufficient conditions are given for decomposability of $\omega$. A characterization of factorial Plücker rings is stated, i.e. rings in which for arbitrary $n>m\geqslant2$ every $m$-vector of $\Lambda^m(A^n)$ which satisfies the Plücker condition is decomposable. Bibliography: 8 titles.
@article{SM_1971_13_4_a1,
     author = {G. B. Kleiner},
     title = {On {Pl\"ucker} properties of rings},
     journal = {Sbornik. Mathematics},
     pages = {517--528},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/}
}
TY  - JOUR
AU  - G. B. Kleiner
TI  - On Pl\"ucker properties of rings
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 517
EP  - 528
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/
LA  - en
ID  - SM_1971_13_4_a1
ER  - 
%0 Journal Article
%A G. B. Kleiner
%T On Pl\"ucker properties of rings
%J Sbornik. Mathematics
%D 1971
%P 517-528
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/
%G en
%F SM_1971_13_4_a1
G. B. Kleiner. On Pl\"ucker properties of rings. Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/SM_1971_13_4_a1/