Wiener–Hopf equations in a quadrant of the plane, discrete groups, and automorphic functions
Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 491-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Operators $A(l_1(Z_2^{++})\to l_1(Z_2^{++}))$ of the form $(A\xi)(x)=\sum_{K\in Z_2^{++}}a(x-k)\xi(k)$, where $a\in l_1(Z_2)$ and $Z_2$ ($Z_2^{++}$) is the set of planar points with integral (nonnegative) coordinates, are considered. Basic results of the paper: invertibility of the operator $A$ is proved, and an analysis is made of analytic properties of the symbol $F\xi$ of the solution of the equation $A\xi=\eta$. Figures: 4. Bibliography: 16 titles.
@article{SM_1971_13_4_a0,
     author = {V. A. Malyshev},
     title = {Wiener{\textendash}Hopf equations in a~quadrant of the plane, discrete groups, and automorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {491--516},
     year = {1971},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_4_a0/}
}
TY  - JOUR
AU  - V. A. Malyshev
TI  - Wiener–Hopf equations in a quadrant of the plane, discrete groups, and automorphic functions
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 491
EP  - 516
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_4_a0/
LA  - en
ID  - SM_1971_13_4_a0
ER  - 
%0 Journal Article
%A V. A. Malyshev
%T Wiener–Hopf equations in a quadrant of the plane, discrete groups, and automorphic functions
%J Sbornik. Mathematics
%D 1971
%P 491-516
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1971_13_4_a0/
%G en
%F SM_1971_13_4_a0
V. A. Malyshev. Wiener–Hopf equations in a quadrant of the plane, discrete groups, and automorphic functions. Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 491-516. http://geodesic.mathdoc.fr/item/SM_1971_13_4_a0/

[1] I. B. Simonenko, “Operatory tipa svertki v konusakh”, Matem. sb., 74(116) (1967), 298–313 | MR | Zbl

[2] I. B. Simonenko, “O mnogomernykh diskretnykh svertkakh”, Matem. issledovaniya, 3, no. 1, Kishinev, 1968, 108–122 | MR | Zbl

[3] V. A. Malyshev, “O reshenii diskretnykh uravnenii Vinera–Khopfa v chetverti ploskosti”, DAN SSSR, 187:6 (1969), 1243–1246 | Zbl

[4] N. Wiener, E. Hopf, “Ueber Eine Klasse Singularen Integralgleichungen”, Sitzungsb. Preus. Akad. Wiss., 1931, 696–706 | Zbl

[5] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi matem. nauk, XIII:5(83) (1958), 3–120 | MR

[6] I. Ts. Gokhberg, L. S. Goldenshtein, “O mnogomernom integralnom uravnenii na poluprostranstve s yadrom, zavisyaschim ot raznosti argumentov, i ego diskretnom analoge”, DAN SSSR, 131:1 (1960), 9–12 | Zbl

[7] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Kommutativnye normirovannye koltsa, Fizmatgiz, Moskva, 1960 | Zbl

[8] E. I. Zverovich, G. S. Litvinchuk, “Kraevye zadachi so sdvigom dlya analiticheskikh funktsii i singulyarnye funktsionalnye uravneniya”, Uspekhi matem. nauk, XXIII:3(141) (1968), 67–121

[9] J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, VIII, American Math. Soc., Providence, R.I., 1964 | MR

[10] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, Moskva, 1960

[11] L. R. Ford, Avtomorfnye funktsii, ONTI, Moskva–Leningrad, 1936

[12] K. Weierstrass, Vorlesungen uber die theorie der Abelschen transzendenten, Math. Werke, 4, Berlin, 1902 | Zbl

[13] A. Selberg, “On discontinuous groups in higher dimensional symmetric spaces”, Tata Inst. of Fundam. Research, 1960, 147–164 | MR | Zbl

[14] V. A. Malyshev, “Analiticheskii metod v teorii sluchainykh bluzhdanii v chetverti ploskosti: prostoe bluzhdanie s kosym otrazheniem”, Trudy Sovetsko-Yaponskogo simpoziuma po teorii veroyatnostei, Khabarovsk, 1969, 176–184

[15] V. S. Rabinovich, “Mnogomernoe uravnenie Vinera–Khopfa dlya konusov”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, 5 (1957), 59–67

[16] V. A. Kakichev, “Kraevye zadachi lineinogo sopryazheniya dlya funktsii, golomorfnykh v bitsilindricheskikh oblastyakh”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, 1967, no. 5, 37–58 | Zbl