Wiener--Hopf equations in a~quadrant of the plane, discrete groups, and automorphic functions
Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 491-516
Voir la notice de l'article provenant de la source Math-Net.Ru
Operators $A(l_1(Z_2^{++})\to l_1(Z_2^{++}))$ of the form $(A\xi)(x)=\sum_{K\in Z_2^{++}}a(x-k)\xi(k)$, where $a\in l_1(Z_2)$ and $Z_2$ ($Z_2^{++}$) is the set of planar points with integral (nonnegative) coordinates, are considered. Basic results of the paper: invertibility of the operator $A$ is proved, and an analysis is made of analytic properties of the symbol $F\xi$ of the solution of the equation $A\xi=\eta$.
Figures: 4.
Bibliography: 16 titles.
@article{SM_1971_13_4_a0,
author = {V. A. Malyshev},
title = {Wiener--Hopf equations in a~quadrant of the plane, discrete groups, and automorphic functions},
journal = {Sbornik. Mathematics},
pages = {491--516},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_4_a0/}
}
V. A. Malyshev. Wiener--Hopf equations in a~quadrant of the plane, discrete groups, and automorphic functions. Sbornik. Mathematics, Tome 13 (1971) no. 4, pp. 491-516. http://geodesic.mathdoc.fr/item/SM_1971_13_4_a0/