Extended resolvents and extended spectral functions of a~Hermitian operator
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 435-450

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct the theory of extensions of Hermitian operators which are initially defined on a manifold in Hilbert space. The operators may have infinite defect numbers, and the manifold may fail to be dense. The extension is accompanied by a result in the Hilbert space $\mathfrak H_-$ of ideal elements (generalized functions which are defined on the Hilbert space of elements which belong to the basic Hilbert space: $\mathfrak H_+\subset\mathfrak H$). We conduct a detailed analysis of extended generalized resolvents and corresponding spectral functions. We explain the connection between functions of the form $(\widehat R_\lambda f, f)$, where $\widehat R_\lambda$ is an extended generalized resolvent, and the theory of $R$-functions. Bibliography: 14 titles.
@article{SM_1971_13_3_a6,
     author = {Yu. L. Shmul'yan},
     title = {Extended resolvents and extended spectral functions of {a~Hermitian} operator},
     journal = {Sbornik. Mathematics},
     pages = {435--450},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/}
}
TY  - JOUR
AU  - Yu. L. Shmul'yan
TI  - Extended resolvents and extended spectral functions of a~Hermitian operator
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 435
EP  - 450
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/
LA  - en
ID  - SM_1971_13_3_a6
ER  - 
%0 Journal Article
%A Yu. L. Shmul'yan
%T Extended resolvents and extended spectral functions of a~Hermitian operator
%J Sbornik. Mathematics
%D 1971
%P 435-450
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/
%G en
%F SM_1971_13_3_a6
Yu. L. Shmul'yan. Extended resolvents and extended spectral functions of a~Hermitian operator. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 435-450. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/