Extended resolvents and extended spectral functions of a Hermitian operator
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 435-450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we construct the theory of extensions of Hermitian operators which are initially defined on a manifold in Hilbert space. The operators may have infinite defect numbers, and the manifold may fail to be dense. The extension is accompanied by a result in the Hilbert space $\mathfrak H_-$ of ideal elements (generalized functions which are defined on the Hilbert space of elements which belong to the basic Hilbert space: $\mathfrak H_+\subset\mathfrak H$). We conduct a detailed analysis of extended generalized resolvents and corresponding spectral functions. We explain the connection between functions of the form $(\widehat R_\lambda f, f)$, where $\widehat R_\lambda$ is an extended generalized resolvent, and the theory of $R$-functions. Bibliography: 14 titles.
@article{SM_1971_13_3_a6,
     author = {Yu. L. Shmul'yan},
     title = {Extended resolvents and extended spectral functions of {a~Hermitian} operator},
     journal = {Sbornik. Mathematics},
     pages = {435--450},
     year = {1971},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/}
}
TY  - JOUR
AU  - Yu. L. Shmul'yan
TI  - Extended resolvents and extended spectral functions of a Hermitian operator
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 435
EP  - 450
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/
LA  - en
ID  - SM_1971_13_3_a6
ER  - 
%0 Journal Article
%A Yu. L. Shmul'yan
%T Extended resolvents and extended spectral functions of a Hermitian operator
%J Sbornik. Mathematics
%D 1971
%P 435-450
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/
%G en
%F SM_1971_13_3_a6
Yu. L. Shmul'yan. Extended resolvents and extended spectral functions of a Hermitian operator. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 435-450. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a6/

[1] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, t. 4, Fizmatgiz, Moskva, 1961

[2] G. I. Kats, “Obobschennye elementy gilbertova prostranstva”, Ukr. matem. zh., 12:1 (1960), 13–24 | MR | Zbl

[3] Yu. M. Berezanskii, “Prostranstva s negativnoi normoi”, Uspekhi matem. nauk, XVIII:1(109) (1963), 63–96 | MR

[4] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[5] M. G. Krein, “Osnovnye polozheniya teorii predstavleniya ermitovykh operatorov, s indeksom defekta $(m,m)$”, Ukr. matem. zh., 1:2 (1949), 3–66 | MR | Zbl

[6] M. G. Krein, “Analiticheskie problemy i rezultaty v teorii lineinykh operatorov v gilbertovom prostranstve”, Trudy Mezhdunarodnogo kongressa matematikov, Mir, Moskva, 1968

[7] E. R. Tsekanovskii, “Obobschennye samosopryazhennye rasshireniya simmetricheskikh operatorov”, DAN SSSR, 178:6 (1968), 1267–1270

[8] E. R. Tsekanovskii, “Obobschennye rasshireniya nesimmetricheskikh operatorov”, Matem. sb., 68(110) (1965), 527–548

[9] K. Iosida, Funktsionalnyi analiz, Mir, Moskva, 1967 | MR

[10] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR, seriya matem., 18:1 (1954), 51–86 | MR | Zbl

[11] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1966 | MR | Zbl

[12] I. S. Kats, M. G. Krein, “$R$-funktsii – analiticheskie funktsii, otobrazhayuschie verkhnyuyu poluploskost v sebya”, Dopolnenie I k kn.: F. Atkinson, Diskretnye i nepreryvnye kraevye zadachi, Mir, Moskva, 1968 | MR

[13] F. A. Berezin, “O modeli Li”, Matem. sb., 60(102) (1963), 425–446 | MR

[14] Yu. P. Ginzburg, I. S. Iokhvidov, “Issledovaniya po geometrii beskonechnomernykh prostranstv s bilineinoi metrikoi”, Uspekhi matem. nauk, XVII:4(106) (1962), 3–56 | MR