Boundary properties of analytic functions representable as integrals of Cauchy type
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 419-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to a study of the properties of the classes $K_S(G)$ and $K_L(G)$ of functions $f(z)$ analytic in a region $G$ having a rectifiable Jordan boundary which are representable as Cauchy–Stieltjes integrals $f(z)=\int_\Gamma(\zeta-z)^{-1}d\mu(\zeta)$ or Cauchy–Lebesgue integrals $f(z)=\int_\Gamma\omega(\zeta)(\zeta-z)^{-1}d\zeta$, respectively. Bibliography: 14 titles.
@article{SM_1971_13_3_a5,
     author = {G. Ts. Tumarkin},
     title = {Boundary properties of analytic functions representable as integrals of {Cauchy} type},
     journal = {Sbornik. Mathematics},
     pages = {419--434},
     year = {1971},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/}
}
TY  - JOUR
AU  - G. Ts. Tumarkin
TI  - Boundary properties of analytic functions representable as integrals of Cauchy type
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 419
EP  - 434
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/
LA  - en
ID  - SM_1971_13_3_a5
ER  - 
%0 Journal Article
%A G. Ts. Tumarkin
%T Boundary properties of analytic functions representable as integrals of Cauchy type
%J Sbornik. Mathematics
%D 1971
%P 419-434
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/
%G en
%F SM_1971_13_3_a5
G. Ts. Tumarkin. Boundary properties of analytic functions representable as integrals of Cauchy type. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 419-434. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, Moskva, 1966 | MR

[2] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, Moskva, 1959 | MR

[3] M. V. Keldysh, M. A. Lavrentev, “Sur la representation conforme des domaines limites par des courbes rectifiables”, Ann. Scient. Ecole Norm. Supér, 59 (1937), 1–38

[4] I. Radon, “O kraevykh zadachakh dlya logarifmicheskogo potentsiala”, Uspekhi matem. nauk. I, 1943, no. 3–4, 96–124

[5] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, Moskva, 1950

[6] V. I. Smirnov, “Sur les formules de Cauchy et de Green et quelques problemes quis'y rattachent”, Izv. AN SSSR, VII:3 (1932), 337–371 | Zbl

[7] G. Ts. Tumarkin, “Ob integralakh tipa Koshi–Stiltesa”, V Vsesoyuznaya konferentsiya po teorii funktsii. Tezisy dokladov, Erevan, 1960, 109–111

[8] G. Ts. Tumarkin, “Svoistva analiticheskikh funktsii, predstavimykh integralami Koshi–Stiltesa i tipa Koshi–Lebega”, Izv. AN Arm. SSR, XVI:5 (1963), 23–45 | MR

[9] G. Ts. Tumarkin, “Usloviya skhodimosti granichnykh znachenii integralov tipa Koshi”, Matem. zametki, 5:4 (1969), 441–448 | MR | Zbl

[10] G. Ts. Tumarkin, “Usloviya suschestvovaniya analiticheskoi mazhoranty semeistva analiticheskikh funktsii”, AN Arm. SSR, XVII:6 (1964), 3–25 | MR

[11] G. Ts. Tumarkin, “Priblizhenie v razlichnykh metrikakh funktsii, zadannykh na okruzhnosti, posledovatelnostyami ratsionalnykh drobei s fiksirovannymi polyusami”, Izv. AN SSSR, seriya matem., 30 (1966), 721–766 | MR | Zbl

[12] G. Ts. Tumarkin, “Usloviya skhodimosti granichnykh znachenii analiticheskikh funktsii i priblizhenie na spryamlyaemykh krivykh”, Sovremennye problemy teorii analiticheskikh funktsii, Nauka, Moskva, 1966, 283–295 | MR

[13] V. P. Khavin, “Ob analiticheskikh funktsiyakh predstavimykh integralom tipa Koshi–Stiltesa”, Vyp. LGU, 1958, no. 1, 66–79 | Zbl

[14] V. P. Khavin, “Granichnye svoistva integralov tipa Koshi i garmonicheski sopryazhennykh funktsii v oblastyakh so spryamlyaemoi granitsei”, Matem. sb., 68(110) (1965), 499–517 | Zbl