Boundary properties of analytic functions representable as integrals of Cauchy type
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 419-434
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to a study of the properties of the classes $K_S(G)$
and $K_L(G)$ of functions $f(z)$ analytic in a region $G$ having a rectifiable Jordan boundary which are representable as Cauchy–Stieltjes integrals
$f(z)=\int_\Gamma(\zeta-z)^{-1}d\mu(\zeta)$ or Cauchy–Lebesgue integrals
$f(z)=\int_\Gamma\omega(\zeta)(\zeta-z)^{-1}d\zeta$, respectively.
Bibliography: 14 titles.
@article{SM_1971_13_3_a5,
author = {G. Ts. Tumarkin},
title = {Boundary properties of analytic functions representable as integrals of {Cauchy} type},
journal = {Sbornik. Mathematics},
pages = {419--434},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/}
}
G. Ts. Tumarkin. Boundary properties of analytic functions representable as integrals of Cauchy type. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 419-434. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/