Boundary properties of analytic functions representable as integrals of Cauchy type
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 419-434

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a study of the properties of the classes $K_S(G)$ and $K_L(G)$ of functions $f(z)$ analytic in a region $G$ having a rectifiable Jordan boundary which are representable as Cauchy–Stieltjes integrals $f(z)=\int_\Gamma(\zeta-z)^{-1}d\mu(\zeta)$ or Cauchy–Lebesgue integrals $f(z)=\int_\Gamma\omega(\zeta)(\zeta-z)^{-1}d\zeta$, respectively. Bibliography: 14 titles.
@article{SM_1971_13_3_a5,
     author = {G. Ts. Tumarkin},
     title = {Boundary properties of analytic functions representable as integrals of {Cauchy} type},
     journal = {Sbornik. Mathematics},
     pages = {419--434},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/}
}
TY  - JOUR
AU  - G. Ts. Tumarkin
TI  - Boundary properties of analytic functions representable as integrals of Cauchy type
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 419
EP  - 434
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/
LA  - en
ID  - SM_1971_13_3_a5
ER  - 
%0 Journal Article
%A G. Ts. Tumarkin
%T Boundary properties of analytic functions representable as integrals of Cauchy type
%J Sbornik. Mathematics
%D 1971
%P 419-434
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/
%G en
%F SM_1971_13_3_a5
G. Ts. Tumarkin. Boundary properties of analytic functions representable as integrals of Cauchy type. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 419-434. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a5/