On completeness of a~system of functions that are close to power functions
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 400-418
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain necessary and sufficient conditions for the completeness of the system $\{f_n(x)=x^{\lambda_n}[1+\varepsilon_n(x)]\}$ in $L_p[0, a]$, where $\varepsilon_n(x)\in L_p[0, a]$, $\varlimsup_{n\to\infty}\frac{\ln m_n}{\lambda_n}0$, $m_n = \|\varepsilon_n(x)\|_{L_p[0, a]}$, $n=1,2,\dots$; $1$.
Bibliography: 4 titles.
@article{SM_1971_13_3_a4,
author = {L. A. Leont'eva},
title = {On completeness of a~system of functions that are close to power functions},
journal = {Sbornik. Mathematics},
pages = {400--418},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a4/}
}
L. A. Leont'eva. On completeness of a~system of functions that are close to power functions. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 400-418. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a4/