On completeness of a~system of functions that are close to power functions
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 400-418

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the completeness of the system $\{f_n(x)=x^{\lambda_n}[1+\varepsilon_n(x)]\}$ in $L_p[0, a]$, where $\varepsilon_n(x)\in L_p[0, a]$, $\varlimsup_{n\to\infty}\frac{\ln m_n}{\lambda_n}0$, $m_n = \|\varepsilon_n(x)\|_{L_p[0, a]}$, $n=1,2,\dots$; $1$. Bibliography: 4 titles.
@article{SM_1971_13_3_a4,
     author = {L. A. Leont'eva},
     title = {On completeness of a~system of functions that are close to power functions},
     journal = {Sbornik. Mathematics},
     pages = {400--418},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a4/}
}
TY  - JOUR
AU  - L. A. Leont'eva
TI  - On completeness of a~system of functions that are close to power functions
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 400
EP  - 418
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a4/
LA  - en
ID  - SM_1971_13_3_a4
ER  - 
%0 Journal Article
%A L. A. Leont'eva
%T On completeness of a~system of functions that are close to power functions
%J Sbornik. Mathematics
%D 1971
%P 400-418
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a4/
%G en
%F SM_1971_13_3_a4
L. A. Leont'eva. On completeness of a~system of functions that are close to power functions. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 400-418. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a4/