Normal solvability of a~class of differential equations of infinite order
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 371-399
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we study a differential equation of infinite order with polynomial coefficients
\begin{equation}
Ly\equiv\sum^\infty_{k=1}P_k(x)y^k(x)=f(x),\qquad P_k(x)=\sum^{n_k}_{s= 0}a_s^k x^s,
\end{equation}
where $\varlimsup_{k\to\infty}\frac{n_k}k=\alpha1$.
Under given conditions on the coefficients $a_s^k$, normal solvability of equation $(1)$ is established in the class of entire functions $[1-\alpha,Q]$, where $0$ and $Q$ is determined by the coefficients $a_s^k$.
Bibliography: 10 titles.
@article{SM_1971_13_3_a3,
author = {Yu. F. Korobeinik and O. V. Epifanov},
title = {Normal solvability of a~class of differential equations of infinite order},
journal = {Sbornik. Mathematics},
pages = {371--399},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/}
}
TY - JOUR AU - Yu. F. Korobeinik AU - O. V. Epifanov TI - Normal solvability of a~class of differential equations of infinite order JO - Sbornik. Mathematics PY - 1971 SP - 371 EP - 399 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/ LA - en ID - SM_1971_13_3_a3 ER -
Yu. F. Korobeinik; O. V. Epifanov. Normal solvability of a~class of differential equations of infinite order. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 371-399. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/