Normal solvability of a class of differential equations of infinite order
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 371-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we study a differential equation of infinite order with polynomial coefficients \begin{equation} Ly\equiv\sum^\infty_{k=1}P_k(x)y^k(x)=f(x),\qquad P_k(x)=\sum^{n_k}_{s= 0}a_s^k x^s, \end{equation} where $\varlimsup_{k\to\infty}\frac{n_k}k=\alpha<1$. Under given conditions on the coefficients $a_s^k$, normal solvability of equation $(1)$ is established in the class of entire functions $[1-\alpha,Q]$, where $0 and $Q$ is determined by the coefficients $a_s^k$. Bibliography: 10 titles.
@article{SM_1971_13_3_a3,
     author = {Yu. F. Korobeinik and O. V. Epifanov},
     title = {Normal solvability of a~class of differential equations of infinite order},
     journal = {Sbornik. Mathematics},
     pages = {371--399},
     year = {1971},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
AU  - O. V. Epifanov
TI  - Normal solvability of a class of differential equations of infinite order
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 371
EP  - 399
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/
LA  - en
ID  - SM_1971_13_3_a3
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%A O. V. Epifanov
%T Normal solvability of a class of differential equations of infinite order
%J Sbornik. Mathematics
%D 1971
%P 371-399
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/
%G en
%F SM_1971_13_3_a3
Yu. F. Korobeinik; O. V. Epifanov. Normal solvability of a class of differential equations of infinite order. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 371-399. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a3/

[1] Yu. F. Korobeinik, “Nekotorye primeneniya teorii normalno-razreshimykh operatorov k differentsialnym uravneniyam beskonechnogo poryadka”, Matem. sb., 72(114) (1967), 3–37 | MR | Zbl

[2] Yu. F. Korobeinik, “Normalno-razreshimye operatory i differentsialnye uravneniya beskonechnogo poryadka”, Litov. matem. sb., XI:3 (1971)

[3] O. Perron, “Lineare Differentialgleichungen unendlich hoher Ordnung mit ganzen rationalen Koeffitienten”, Math. Ann., 84 (1921), 31–41 | DOI | MR

[4] A. F. Leontev, “Differentsialno-raznostnye uravneniya s lineinymi koeffitsientami”, Trudy ped. in-ta, 14, Gorkii, 1951, 3–30

[5] M. G. Krein, I. Ts. Gokhberg, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Uspekhi matem. nauk, XII:2(74) (1957), 43–118 | MR

[6] N. Burbaki, Obschaya topologiya. Osnovnye struktury, Fizmatgiz, Moskva, 1958

[7] Yu. F. Korobeinik, “O primenimosti differentsialnykh operatorov beskonechnogo poryadka”, Sib. matem. zh., X:3 (1969), 549–564 | MR

[8] Yu. F. Korobeinik, “Ob odnom klasse uravnenii beskonechnogo poryadka v obobschennykh proizvodnykh”, Litov. matem. sb., IV:4 (1964), 497–515 | MR

[9] Yu. F. Korobeinik, “O preobrazovaniyakh analiticheskikh prostranstv s pomoschyu differentsialnykh operatorov beskonechnogo poryadka”, Uspekhi matem. nauk, XX:5(125) (1965), 208–213 | MR

[10] P. van der Steen, On differential operators of infinite order, Doctoral dissertation, Technical University of Delft, Uitgeverij Waltman, Delft, 1968 | MR | Zbl