On a class of operators in von Neumann algebras with Segal measure on the projectors
Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 344-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By means of the concept of Segal measure, defined on projectors (and thus on subspaces associated with a von Neumann algebra) we introduce the concept of relative compactness of sets and, on this basis, the concept of operators completely continuous with respect to the von Neumann algebra and the Segal measure. The article is concerned with the formal structure of the theory of this class of operators: the general theorem of Calkin is obtained on the uniqueness of the ideal with respect to completely continuous operators; a theory is constructed for perturbations of Hermitian operators with respect to completely continuous ones; singular and characteristic numbers are introduced for operators from the von Neumann algebra and their minimax properties are derived; some characterizations are introduced in terms of completely continuous operators. Bibliography: 10 titles.
@article{SM_1971_13_3_a1,
     author = {M. G. Sonis},
     title = {On a~class of operators in {von~Neumann} algebras with {Segal} measure on the projectors},
     journal = {Sbornik. Mathematics},
     pages = {344--359},
     year = {1971},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_3_a1/}
}
TY  - JOUR
AU  - M. G. Sonis
TI  - On a class of operators in von Neumann algebras with Segal measure on the projectors
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 344
EP  - 359
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_3_a1/
LA  - en
ID  - SM_1971_13_3_a1
ER  - 
%0 Journal Article
%A M. G. Sonis
%T On a class of operators in von Neumann algebras with Segal measure on the projectors
%J Sbornik. Mathematics
%D 1971
%P 344-359
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1971_13_3_a1/
%G en
%F SM_1971_13_3_a1
M. G. Sonis. On a class of operators in von Neumann algebras with Segal measure on the projectors. Sbornik. Mathematics, Tome 13 (1971) no. 3, pp. 344-359. http://geodesic.mathdoc.fr/item/SM_1971_13_3_a1/

[1] F. J. Murray, J. von Neumann, “On rings of operators. I, II, IV”, Ann. Math., 37 (1936), 116–229 ; Trans. Amer. Math. Soc., 41 (1937), 203–248; Ann. Math., 44 (1943), 716–808 | DOI | MR | Zbl | DOI | MR | Zbl

[2] J. von Neumann, “On rings of operators. III”, Ann. Math., 41 (1940), 94–161 | DOI | MR | Zbl

[3] I. E. Sigal, “Nekommutativnoe obobschenie abstraktnogo integrirovaniya”, Matematika, 6:1 (1962), 65–131 | MR

[4] V. I. Ovchinnikov, “Simmetrichnye prostranstva izmerimykh operatorov”, DAN SSSR, 191:4 (1970), 769–771 | Zbl

[5] V. I. Ovchinnikov, “Ob $s$-chislakh izmerimykh operatorov”, Funkts. analiz, 4:3 (1970), 78–85 | MR | Zbl

[6] M. A. Naimark, Normirovannye koltsa, Nauka, Moskva, 1968 | MR | Zbl

[7] J. Dixmier, Les algèbres d'opérateurs dans l'espase Hilbertien (Algèbres de von Neumann), Paris, 1957

[8] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1965 | MR

[9] J. W. Calkin, “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”, Ann. Math., 42:2 (1941), 839–873 | DOI | MR | Zbl

[10] H. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1966 | MR | Zbl