Representation of functions in the unit disk by series of rational fractions
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 309-322
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if $f(z)=\sum_{n=0}^\infty a_nz^n$, $a_n=O(1/n^p)$, $p>1$, then $f(z)$ can be expanded in a series
$$
f(z)=\sum_{k=1}^\infty\frac{A_k}{1-\lambda_kz},\qquad|\lambda_k|1,
$$
that converges uniformly inside the unit disk $|z|1$. For $p>2$ the expansion is valid in the closed disk $|z|\leqslant1$, and $\sum_{k=1}^\infty|A_k|\infty$.
Bibliography: 6 titles.
@article{SM_1971_13_2_a7,
author = {T. A. Leont'eva},
title = {Representation of functions in the unit disk by series of rational fractions},
journal = {Sbornik. Mathematics},
pages = {309--322},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a7/}
}
T. A. Leont'eva. Representation of functions in the unit disk by series of rational fractions. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a7/