Representation of functions in the unit disk by series of rational fractions
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 309-322

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if $f(z)=\sum_{n=0}^\infty a_nz^n$, $a_n=O(1/n^p)$, $p>1$, then $f(z)$ can be expanded in a series $$ f(z)=\sum_{k=1}^\infty\frac{A_k}{1-\lambda_kz},\qquad|\lambda_k|1, $$ that converges uniformly inside the unit disk $|z|1$. For $p>2$ the expansion is valid in the closed disk $|z|\leqslant1$, and $\sum_{k=1}^\infty|A_k|\infty$. Bibliography: 6 titles.
@article{SM_1971_13_2_a7,
     author = {T. A. Leont'eva},
     title = {Representation of functions in the unit disk by series of rational fractions},
     journal = {Sbornik. Mathematics},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a7/}
}
TY  - JOUR
AU  - T. A. Leont'eva
TI  - Representation of functions in the unit disk by series of rational fractions
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 309
EP  - 322
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_2_a7/
LA  - en
ID  - SM_1971_13_2_a7
ER  - 
%0 Journal Article
%A T. A. Leont'eva
%T Representation of functions in the unit disk by series of rational fractions
%J Sbornik. Mathematics
%D 1971
%P 309-322
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_2_a7/
%G en
%F SM_1971_13_2_a7
T. A. Leont'eva. Representation of functions in the unit disk by series of rational fractions. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a7/