@article{SM_1971_13_2_a6,
author = {R. V. Plykin},
title = {The topology of basis sets for {Smale} diffeomorphisms},
journal = {Sbornik. Mathematics},
pages = {297--307},
year = {1971},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a6/}
}
R. V. Plykin. The topology of basis sets for Smale diffeomorphisms. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 297-307. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a6/
[1] D. V. Anosov, Geodezicheskie potoki na zamknutykh mnogoobraziyakh otritsatelnoi krivizny, Trudy Matem. in-ta im. V. A. Steklova, XC, 1967
[2] D. V. Anosov, Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem, Mezhdunar. simpozium po nelineinym kolebaniyam. Tezisy dokladov, Kiev, 1969
[3] M. A. Avez, “Topologie des diffeomorphismes D'Anosov qui possedent un invariant integral”, C. R. Acad. Sci., 265 (1967), 503–510
[4] W. Hurewicz, “Uber den sogenannten Produksatz der Dimensionstheorie”, Math. Ann., 102 (1930), 305–312 | DOI | MR
[5] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, Moskva, 1948
[6] V. I. Pupko, “O nesamoperesekayuschikhsya krivykh na zamknutykh poverkhnostyakh”, DAN SSSR, 177:2 (1967), 272–274 | MR | Zbl
[7] Ya. G. Sinai, “Markovskie razbieniya i $Y$-diffeomorfizmy”, Funkts. analiz, 2:1 (1968), 64–89 | MR | Zbl
[8] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, Uspekhi matem. nauk, XXV:1(151) (1970), 113–185 | MR
[9] S. Smeil, “Teorema $\Omega$-ustoichivosti”, Matematika, 13:2 (1969), 161–169
[10] R. V. Plykin, “Diffeomorfizmy Smeila na zamknutykh poverkhnostyakh”, Uspekhi matem. nauk, XXIV:2(146) (1969), 231–232 | MR