Comology of compact complex homogeneous spaces
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 285-296
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study compact complex homogeneous spaces having a complex torus for the fiber of the canonical fibration (Tits fibration). We prove that the cohomology of such a space $X$ with coefficients in the sheaf of germs of holomorphic sections of the homogeneous linear fibration $\mathbf E$ is nonzero only if $\mathbf E$ is the inverse image of some fibration $\widetilde{\mathbf E}$ over a base $D$ of the canonical fibration. In this case the representation in $H^*(X,\mathbf E)$ can be computed using a spectral sequence if we know the representation in $H^*(D,\widetilde{\mathbf E})$. The resulting theorem generalizes Griffiths' result for $C$-spaces.
Bibliography: 8 titles.
@article{SM_1971_13_2_a5,
author = {D. N. Akhiezer},
title = {Comology of compact complex homogeneous spaces},
journal = {Sbornik. Mathematics},
pages = {285--296},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/}
}
D. N. Akhiezer. Comology of compact complex homogeneous spaces. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/