Comology of compact complex homogeneous spaces
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 285-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study compact complex homogeneous spaces having a complex torus for the fiber of the canonical fibration (Tits fibration). We prove that the cohomology of such a space $X$ with coefficients in the sheaf of germs of holomorphic sections of the homogeneous linear fibration $\mathbf E$ is nonzero only if $\mathbf E$ is the inverse image of some fibration $\widetilde{\mathbf E}$ over a base $D$ of the canonical fibration. In this case the representation in $H^*(X,\mathbf E)$ can be computed using a spectral sequence if we know the representation in $H^*(D,\widetilde{\mathbf E})$. The resulting theorem generalizes Griffiths' result for $C$-spaces. Bibliography: 8 titles.
@article{SM_1971_13_2_a5,
     author = {D. N. Akhiezer},
     title = {Comology of compact complex homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {285--296},
     year = {1971},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/}
}
TY  - JOUR
AU  - D. N. Akhiezer
TI  - Comology of compact complex homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 285
EP  - 296
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/
LA  - en
ID  - SM_1971_13_2_a5
ER  - 
%0 Journal Article
%A D. N. Akhiezer
%T Comology of compact complex homogeneous spaces
%J Sbornik. Mathematics
%D 1971
%P 285-296
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/
%G en
%F SM_1971_13_2_a5
D. N. Akhiezer. Comology of compact complex homogeneous spaces. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/

[1] J. Tits, “Espaces homogenes complexes compacts”, Comm. Math. Helv., 37:2 (1962), 111–120 | DOI | MR | Zbl

[2] R. Bott, “Homogeneous vector bundles”, Ann. Math., 66:2 (1957), 203–248 | DOI | MR | Zbl

[3] P. A. Griffiths, “Some geometric and analytic properties of homogeneous complex manifolds. I”, Acta Math., 110:1–2 (1963), 115–155 | DOI | MR | Zbl

[4] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, 1966 | MR

[5] Zh. P. Serr, Algebry Li i gruppy Li, Mir, Moskva, 1969 | MR | Zbl

[6] M. Ise, “On the geometry of Hopf manifolds”, Osaka Math. J., 12:2 (1960), 387–402 | MR | Zbl

[7] M. Ise, “Some properties of complex analytic vector bundles over compact complex, homogeneous spaces”, Osaka Math. J., 12:2 (1960), 217–252 | MR | Zbl

[8] S. Murakami, “Sur certains espaces fibres principaux differentiables et holomorphes”, Nagoya Math. J., 15 (1959), 171–199 | MR | Zbl