Comology of compact complex homogeneous spaces
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 285-296

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study compact complex homogeneous spaces having a complex torus for the fiber of the canonical fibration (Tits fibration). We prove that the cohomology of such a space $X$ with coefficients in the sheaf of germs of holomorphic sections of the homogeneous linear fibration $\mathbf E$ is nonzero only if $\mathbf E$ is the inverse image of some fibration $\widetilde{\mathbf E}$ over a base $D$ of the canonical fibration. In this case the representation in $H^*(X,\mathbf E)$ can be computed using a spectral sequence if we know the representation in $H^*(D,\widetilde{\mathbf E})$. The resulting theorem generalizes Griffiths' result for $C$-spaces. Bibliography: 8 titles.
@article{SM_1971_13_2_a5,
     author = {D. N. Akhiezer},
     title = {Comology of compact complex homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/}
}
TY  - JOUR
AU  - D. N. Akhiezer
TI  - Comology of compact complex homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 285
EP  - 296
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/
LA  - en
ID  - SM_1971_13_2_a5
ER  - 
%0 Journal Article
%A D. N. Akhiezer
%T Comology of compact complex homogeneous spaces
%J Sbornik. Mathematics
%D 1971
%P 285-296
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/
%G en
%F SM_1971_13_2_a5
D. N. Akhiezer. Comology of compact complex homogeneous spaces. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a5/