Primitive $m$-near-rings over multioperator groups
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 247-265

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we examine $m\Omega$-near-rings, i.e. $(m+1)$-ary associative ringoids over $\Omega$-groups with one supplementary condition. The concept of a module over an $m\Omega$-near-ring is introduced and, with its aid, the concept of a primitive $m\Omega$-near-ring is introduced, generalizing the idea of a primitive ring. Density theorems are proved for such $m\Omega$-near-rings. With the aid of these theorems, primitive $m\Omega$-near-rings with minimum condition for right ideals are described, and a series of theorems are proved concerning the structure of $m\Omega$-near-rings, which are analogous to simple rings with minimal one-sided ideals. Bibliography: 9 titles.
@article{SM_1971_13_2_a3,
     author = {S. V. Polin},
     title = {Primitive $m$-near-rings over multioperator groups},
     journal = {Sbornik. Mathematics},
     pages = {247--265},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a3/}
}
TY  - JOUR
AU  - S. V. Polin
TI  - Primitive $m$-near-rings over multioperator groups
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 247
EP  - 265
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_2_a3/
LA  - en
ID  - SM_1971_13_2_a3
ER  - 
%0 Journal Article
%A S. V. Polin
%T Primitive $m$-near-rings over multioperator groups
%J Sbornik. Mathematics
%D 1971
%P 247-265
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_2_a3/
%G en
%F SM_1971_13_2_a3
S. V. Polin. Primitive $m$-near-rings over multioperator groups. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 247-265. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a3/