Excessive measures and entry laws for a Markov process
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 209-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a Markov transition function $p(t,x,\Gamma)$ there is constructed a space of active entries $\mathscr U$ and a space of passive entries $\mathscr U'$. The first of these is used to describe all entry laws and purely excessive measures associated with $p(t,x,\Gamma)$ and satisfying certain conditions of finiteness. The second is used to describe all measures $\eta$ that are invariant with respect to $p(t,x,\Gamma)$ and with respect to which some “standard” function $l$ is integrable. Bibliography: 11 titles.
@article{SM_1971_13_2_a2,
     author = {E. B. Dynkin},
     title = {Excessive measures and entry laws for {a~Markov} process},
     journal = {Sbornik. Mathematics},
     pages = {209--246},
     year = {1971},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a2/}
}
TY  - JOUR
AU  - E. B. Dynkin
TI  - Excessive measures and entry laws for a Markov process
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 209
EP  - 246
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_2_a2/
LA  - en
ID  - SM_1971_13_2_a2
ER  - 
%0 Journal Article
%A E. B. Dynkin
%T Excessive measures and entry laws for a Markov process
%J Sbornik. Mathematics
%D 1971
%P 209-246
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1971_13_2_a2/
%G en
%F SM_1971_13_2_a2
E. B. Dynkin. Excessive measures and entry laws for a Markov process. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 209-246. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a2/

[1] Dzh. L. Dub, Veroyatnostnye protsessy, IL, Moskva, 1956

[2] J. L. Doob, “Discrete potential theory and boundaries”, J. Math. and Mech., 8:3 (1959), 433–458 | MR | Zbl

[3] J. L. Doob, “Compaccification of the discrete state space of a Markov process”, Z. Wahrscheinlichkeitstheorie, 10 (1968), 236–251 | DOI | MR | Zbl

[4] E. B. Dynkin, “Granichnaya teoriya dlya markovskikh protsessov (diskretnyi sluchai)”, Uspekhi matem. nauk, XXIV:2(146) (1969), 3–42 | MR

[5] E. B. Dynkin, “Prostranstvo vykhodov markovskogo protsessa”, Uspekhi matem. nauk, XXIV:4(148) (1969), 89–152 | MR

[6] E. B. Dynkin, “Ekstsessivnye funktsii i prostranstvo vykhodov markovskogo protsessa”, Teoriya veroyatnostei, 15:1 (1970), 38–55

[7] H. Kunita, T. Watanabe, “Some theorems concerning resolvents over locally compact spaces”, Proc. 5th Berkeley Sympos. Math. Statist. and Prob., v. II, part 2, 1967, 131–164 | MR | Zbl

[8] G. A. Hunt, “Markoff chains and Martin boundaries”, Illinois J. Math., 4 (1960), 313–340 ; Matematika, 5:5 (1961), 121–149 | MR | Zbl

[9] G. A. Hunt, “Transformation of Markoff processes”, Proc. Internat. Congress of Math., Stockholm, 1962, Uppsala, 1963, 531–535 | MR | Zbl

[10] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, IL, Moskva, 1967

[11] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, Moskva, 1963 | MR