On a~class of elliptic pseudodifferential operators degenerate on a~submani\-fold
Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 155-185

Voir la notice de l'article provenant de la source Math-Net.Ru

There are investigated elliptic pseudodifferential operators $p(x,D)$ which are degenerate on a submanifold $\Gamma$ of any codimension. Under certain further assumptions, for the operator which is obtained by adjoining to $p(x,D)$ boundary and coboundary conditions on the submanifold $\Gamma$, there are constructed left and right regularizers, and theorems on hypoellipticity and local solvability are proved. In case $p(x,D)$ is defined on a smooth compact manifold it is shown to be noetherian on special weighted spaces of Sobolev type. Bibliography: 24 titles.
@article{SM_1971_13_2_a0,
     author = {V. V. Grushin},
     title = {On a~class of elliptic pseudodifferential operators degenerate on a~submani\-fold},
     journal = {Sbornik. Mathematics},
     pages = {155--185},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_2_a0/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - On a~class of elliptic pseudodifferential operators degenerate on a~submani\-fold
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 155
EP  - 185
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_2_a0/
LA  - en
ID  - SM_1971_13_2_a0
ER  - 
%0 Journal Article
%A V. V. Grushin
%T On a~class of elliptic pseudodifferential operators degenerate on a~submani\-fold
%J Sbornik. Mathematics
%D 1971
%P 155-185
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_2_a0/
%G en
%F SM_1971_13_2_a0
V. V. Grushin. On a~class of elliptic pseudodifferential operators degenerate on a~submani\-fold. Sbornik. Mathematics, Tome 13 (1971) no. 2, pp. 155-185. http://geodesic.mathdoc.fr/item/SM_1971_13_2_a0/